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Abstract.—Crucial to understanding the process of natural selection is characterizing phenotypic selection. Measures
of phenotypic selection can be biased by environmental variation among individuals that causes a spurious correlation
between a trait and fitness. One solution is analyzing genotypic data, rather than phenotypic data. Genotypic data,
however, are difficult to gather, can be gathered from few species, and typically have low statistical power. Envi-
ronmental correlations may act through traits other than through fitness itself. A path analytic framework, which
includes measures of such traits, may reduce environmental bias in estimates of selection coefficients. We tested the
efficacy of path analysis to reduce bias by re-analyzing three experiments where both phenotypic and genotypic data
were available. All three consisted of plant species (Impatiens capensis, Arabidopsis thaliana, and Raphanus sativus)
grown in experimental plots or the greenhouse. We found that selection coefficients estimated by path analysis using
phenotypic data were highly correlated with those based on genotypic data with little systematic bias in estimating
the strength of selection. Although not a panacea, using path analysis can substantially reduce environmental biases
in estimates of selection coefficients. Such confidence in phenotypic selection estimates is critical for progress in the
study of natural selection.

Key words.—Arabidopsis thaliana, Impatiens capensis, natural selection, path analysis, Raphanus sativus, regression
analysis, selection gradient.
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Crucial to understanding the process of natural selection
is characterizing phenotypic selection, the within-generation
process of differential survival and reproduction based on
individual phenotypes. Combined with genetic variation,
phenotypic selection results in evolutionary changes in the
population mean phenotype and in the frequency of alter-
native genotypes. Phenotypic selection can be measured as
the covariance between a trait and fitness (see Fig. 1A; Rob-
ertson 1966; Price 1970; Crow and Nagylaki 1976). However,
this measure suffers from the problem of confounding cor-
relations. Lande and Arnold (1983; see also Pearson 1903)
pointed out that selection estimates can be confounded by
selection on traits that are phenotypically correlated with the
trait of interest. They solved this problem by the use of mul-
tiple regression, which partitions total selection on a trait (s)
into direct () and indirect components. The result is a better
understanding of which traits are the direct targets of selec-
tion and, thus, the ecological processes responsible for se-
lection. Their paper led to a flurry of studies over the past
15 years devoted to the measurement of phenotypic selection
in natural populations (Kingsolver et al. 2001).

The paper of Lande and Arnold (1983) addresses two sep-
arate issues: understanding the causal components of phe-
notypic selection and predicting the response to selection.
The partition of total selection into direct and indirect com-
ponents addresses the first issue. Combining these selection

4 Present address: Department of Organismic and Evolutionary
Biology, Harvard University, Cambridge, Massachusetts 02138.

components with information on genetic covariances among
traits addresses the second issue. We highlight this distinction
because it is often not appreciated that they are separate, if
related, questions. More importantly, we emphasize that our
paper addresses the first issue, understanding the causal com-
ponents of phenotypic selection. The relationship between
the selection components presented here and predicting the
response to selection is still unresolved (Scheiner et al. 2000).
Our efforts are similar to those of others that have focused
on understanding phenotypic selection, for example, the
spline technique of Schluter (1988) or the use of logistic
regression as suggested by Janzen and Stern (1998).

An important caution about measuring phenotypic selec-
tion was raised by Mitchell-Olds and Shaw (1987), Price et
al. (1988), and Rausher (1992), who noted that environmental
variation among individuals could create biases in selection
estimates (see Fig. 1B), both in the sign and magnitude of
selection coefficients and by disguising stabilizing selection
as directional selection or the converse. Imagine that selec-
tion is measured on leaf size in a population of plants in a
field that varies in nutrient levels. Plants in pockets of high
nutrients may have both larger leaves and greater seed set
(one component of female fitness) because both are directly
affected by nutrient level. An estimate of selection on leaf
size would erroneously conclude that it is under selection.
We might expect such environmental bias to be especially
prevalent in sessile organisms such as plants because mobile
organisms might tend to average out environmental hetero-
geneity. Social interactions, however, can create environ-
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FiGc. 1. (A) A simple model for the regression of fitness (W) on
the trait of interest (z;), where B is the regression coefficient. (B)
A more complex model that includes an environmental factor (E)
that effects both the trait and fitness. £ may represent a complex
of variables that have their effects through different factors and are
correlated with each other. In this model the unbiased selection
coefficient (By) could be estimated only if the environmental factor
were directly measured. For simiplicity, variation due to error is
not included.

mental differences even among mobile individuals, so en-
vironmental bias might exist in many types of situations. See
Rausher (1992) for a formal derivation of this problem and
Stinchcombe et al. (2002) for a method for identifying such
biases.

Rausher’s (1992) solution involves estimating selection on
trait breeding values. The response to selection is based on
the covariance between breeding values and fitness. If one’s
goal is to predict the response to selection, breeding values
should be used. Phenotypic values accurately estimate the
covariance of breeding values and fitness only when there is
no environmental covariance or if the environmental co-
variance happens to mimic the genetic covariance (see Fig.
2; Rausher 1992).

However, if one’s goal is to accurately characterize phe-
notypic selection, genotypic values can also be use to elim-
inate bias due to environmental covariance. To implement
this method, one raises genetic replicates (e.g., clones, full-
sibs, or half-sibs with the last preferred because they provide
the best estimates of additive genetic values) and estimates
selection using genet or family means. Environmental bias
is eliminated as long as the replicates are distributed ran-
domly with respect to environmental factors. In essence, the
use of genotypic means averages environmental heteroge-
neity across replicates.

This method has a critical limitation, however; it can only
be used in cases where it is possible to manipulate genetic
or family replicates. A noncomprehensive survey of the lit-
erature for the period January 1996 to December 2000 found
only five studies that analyzed phenotypic selection using
genotypic data (Mauricio and Rausher 1997; Mauricio et al.
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F1G. 2. A model for the analysis of selection using breeding values.
Breeding values (g;) are linked to phenotypes by heritabilities and
may be genetically correlated with each other. E may represent a
complex of variables that have their effects through different factors
and are correlated with each other. For simplicity, variation due to
error is not included.

1997; Tiffin and Rausher 1999; Juenger and Bergelson 2000;
Shonle and Bergelson 2000). In contrast, in the period Jan-
uary 1999 to December 2000 we identified 33 studies that
used phenotypic data. In most cases an analysis of genotypic
data could not have been performed. The studies that ana-
lyzed genotypic data were all done with plants where ma-
nipulation of siblings or clones is relatively simple due to,
for example, the ease of controlling breeding, the rapidity of
the life cycle, or the ease of creating clonal replicates.

In this paper we present an alternative method for char-
acterizing patterns of selection that avoids the limitations of
genotypic data by allowing the use of phenotypic data. This
alternative method assumes that we can reduce bias in se-
lection estimates by using one or more traits (other than those
of primary interest) to estimate the overall condition of an
individual. Fitness (e.g., number of grandoffspring) is rarely
measured. Instead, we typically measure one or more fitness
surrogates or components, such as survival or fecundity.
These fitness measures depend on the composite state of the
individual. That is, the nutrient variation previously described
does not likely affect fecundity directly, but rather affects a
suite of traits that in turn determine fecundity. We term this
suite of traits ‘‘condition,”’ in keeping with typical usage in
vertebrate biology. In some species there are routine mea-
sures of condition, such as body mass in vertebrates. For
other species we can identify similar traits, such as measures
of vegetative size just prior to flowering.

Now we can recast the environmental covariance problem
into one involving condition. The environment may affect
both our trait of interest (z;) and an individual’s condition
(see Fig. 3A). If we have a measure of condition, including
it in a path analysis of selection on z; will produced an un-
biased estimate of selection on that trait (8y). The model
assumes that the environment affects fitness only through its
effect on condition rather than directly, and that the trait of
interest is not causal on condition. We can now substitute a
model in which the environment is not directly measured and
only condition and our other traits are included (see Fig. 3B).
This model is now a path analysis, rather than a multiple
regression, because we have specified that condition is causal
on z;. It does not matter that the environment affects both
the trait of interest and condition, the path model accounts
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Fi6. 3. (A) A path model that includes the effect of the environ-
mental factor on both the trait of interest (z;) and condition (C).
This model will produce an equivalent estimate of the model in
(B), although the interpretation of the path between the trait and
condition would differ. For simplicity, variation due to error is not
included.

for any such correlation between the trait and condition. It
does mean, though, that the estimate of selection on condition
will be biased. This corrective effect of condition is referred
to as mediation in the structural equation literature (e.g.,
MacKinnon and Dwyer 1993). See Shipley (2000) and ref-
erences therein for a detailed description of the use of path
analysis.

The cause of the correlation between condition and the
trait of interest does not matter (an environmental covariance
in this case). Other causes affecting both the trait and con-
dition, such as a genetic correlation, are similarly accounted
for. To put it another way, although the analysis presented
here is motivated by the issue of environmental bias, our
solution is general. We may, in fact, be reducing bias from
causes other than the environment. It does not matter to our
conclusion—path analysis acts to reduce bias—that we may
fail to identify what the source(s) of that bias is (are). The
result is a better understanding of the causal components of
phenotypic selection. We note, however, that our method will
not work for some traits, for example, early life traits that
might be causal on condition.

To test the efficacy of path analysis to reduce environ-
mental bias we compared it with multiple regression analysis
using both phenotypic and genotypic data. We use genotypic
data here not because it can make a better prediction of the
response to selection, but because it provides a bias-free mea-
sure of phenotypic selection. We present three examples, each
highlighting different strengths of our method. None of these
datasets were collected with the use of path analysis in mind.
Despite this limitation, we show that path analysis works
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well in capturing the structure of natural selection in the
phenotypic data.

MATERIALS AND METHODS

The first dataset was from an experiment designed to un-
derstand patterns of selection on traits and trait plasticities
in Impatiens capensis (Balsaminaceae). This experiment in-
cluded a number of vegetative and flowering traits measured
on multiple inbred family lines. Other analyses showed that
microenvironmental variation in light and soil moisture to
be important in determining trait values and fitness. See Do-
nohue et al. (2000a,b, 2001) for complete details of the ex-
periment, results, and history of this system. For the purposes
of the current paper, we examined only one of the four treat-
ments: the woodland site at low density. This treatment was
chosen a priori, as were the other treatments analyzed in this
paper, based either on having the largest sample size or on
previous analyses indicating strong trait selection.

Seeds for this experiment were initially collected from two
populations, one in an open area and one beneath an oak-
hickory canopy. Inbred lines were maintained through single-
seed descent of self-pollinated plants for six generations. To
start the experiment, seeds were germinated in a cold frame
and planted into the treatment as seedlings. Seedlings in the
low-density treatment analyzed here were planted in a 7 X
16 array, 15 cm apart, giving a density of 53 plants/m?2. Initial
seed mass and germination date were recorded. Two weeks
after the seedlings were planted into the treatments, they were
measured for length of the first and second internodes; height;
number of nodes; length of the largest leaf; and the number
of axillary flowers, branches, and quiescent buds at each node
of the main stem as indicators of meristem allocation. Twice
a week plants were censused for the presence of cleistoga-
mous and chasmogamous flowers and the date of first flow-
ering was determined. Total lifetime fitness was measured as
the estimated total number of seeds produced during the life-
time of the individual by counting the total number of fruits
and multiplying by the number of seeds per fruit from non-
experimental plants in the surrounding population. For this
experiment, leaf length was the measure of condition. The
final sample size consisted of 258 individuals from 35 full-
sib families.

The second dataset was from an experiment designed to
examine the effects of light quality and quantity on plasticity
of Arabidopsis thaliana (Brassicaceae). This experiment mea-
sured a limited number of vegetative and flowering traits in
a highly inbred species. The experiment was done in a green-
house, where environmental heterogeneity is expected to be
low. See Dorn et al. (2000) for complete details of the ex-
periment and results. For the purposes of the current paper,
we examined only one of the four treatments: foliage shade.

The lines used in this experiment were derived from seeds
collected in the spring of 1995 from four natural populations.
From each population, nine inbred full-sib families were ran-
domly selected. Seeds were planted in plastic flats in 6 X 6
grids, 2 cm apart. Within each flat, seeds were randomly
assigned a position, with one seed per line per flat. The light
treatment consisted of a reduced red:far-red ratio (0.5 com-
pared to 1.1 for natural sunlight) and photosynthetically ac-
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tive radiation of 25-30% of ambient levels. The following
traits were measured: bolting date, the number of days be-
tween bolting and flowering, the number of rosette leaves
and length of the longest leaf at bolting, and at senescence
the number of branches growing from the main inflorescence
(inflorescence branches) and from basal leaf axils (basal
branches). Fitness was measured as the total number of fruits.
The number of rosette leaves was the measure of condition
for this dataset. The final sample size consisted of 289 in-
dividuals from 36 full-sib families.

The third dataset was from an experiment designed to ex-
amine density-mediated maternal effects on seed size in Ra-
phanus sativus (Brassicaceae), to detect genetic variation in
phenotypic plasticity for fitness-related traits, and to deter-
mine the effects of plant density on the expression of additive
genetic variation in fitness-related traits. This experiment
used a sire-dam mating design and, thus, allowed examination
of differences between half-sib and full-sib analyses of se-
lection. It also included two fitness measures, maternal and
paternal. In this experiment, environmental heterogeneity
was substantial as indicated by a significant block effect. See
Mazer and Wolfe (1998, unpubl. ms.) for complete details
of the experiment. For the purposes of the current paper, we
examined only one of the three treatments: low density.

The parental generation plants that were hand-pollinated
to produce the seeds used in this experiment were derived
from 95 seeds (each representing a different maternal family)
collected from naturally pollinated plants in August 1990. Of
these plants, 19 were used as pollen donors, which were each
mated to four pollen recipients. From each pollen recipient,
12 seeds were sown in each treatment. The low-density treat-
ment consisted of three blocks. Each block consisted of a 10
X 30 grid of 300 seeds positioned randomly with respect to
family membership and sown 20 cm apart (~30 plants/m?).
Plants were measured for initial seed mass, germination date,
number of days to flowering, number of leaves at flowering,
number of pollen grains in a single flower, pollen grain vol-
ume, style length, total petal area, number of ovules per flow-
er, total number of flowers, total number of fruits, mean seed
number per fruit, mean individual seed mass, lifetime fecun-
dity (number of fruits X mean seed number per fruit), ma-
ternal fitness (lifetime fecundity X mean seed mass), and
paternal fitness (total number of flowers X number of pollen
grains/flower). Paternal half-sib family means were calcu-
lated as the mean of the four full-sib means nested within
each pollen donor. The number of leaves was the measure
of condition in this dataset. Final sample sizes consisted of
484 individuals, 76 full-sib families, and 19 half-sib families.

Statistical Analyses

Evidence for environmental bias in phenotypic selection
estimates was determined using the method of Stinchcombe
et al. (2002). The method involves a comparison of total
selection on phenotypic and genotypic values using a method
first suggested by Rausher (1992), but correcting an error in
the formula presented in that paper. In brief, the method
involves a multiple regression of trait values and deviations
of those trait values from the breeding value (for details, see
Stinchcombe et al. 2002). Although Rausher (1992) and
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Stinchcombe et al. (2002) emphasize this method with regard
to environmental bias, actually it indicates whether bias ex-
ists, regardless of the sources. Other sources include maternal
effects and genetic correlations due to linkage.

Natural selection was measured two ways—with multiple
regression (B, also referred to as the selection gradient) and
with path analysis (B*)—using both phenotypic and geno-
typic data. We emphasize that the genotypic analyses are
being used as a bias-free measure of phenotypic selection
and not as predictors of the response to selection. The Im-
patiens and Arabidopsis data each had one measure of fitness
and, thus, two estimates of each selection measure for each
trait. The Raphanus data had two measures of fitness and two
genotypic measures (full-sib and half-sib) and, thus, six es-
timates of each selection measure for each trait. The selection
gradient () was calculated as the partial regression coeffi-
cient from a multiple regression of fitness on all traits. For
the Raphanus data, separate multiple regressions were done
for the maternal and paternal fitness measures. All multiple
regressions were done with SYSTAT 6.1 for Windows (SPSS,
Inc., Chicago, IL). Statistical significance for all regression
coefficients was based on ordinary least-squares parametric
analyses. The second measure of direct selection (B*) was
calculated using path analysis where direct selection is the
total effect of a trait on fitness. See Scheiner et al. (2000)
for details of this calculation and a discussion of path analysis
terminology. For the Raphanus data, both fitness measures
could be included in a single analysis. To determine the com-
parative importance of environmental correlations acting
through plant condition, path analyses with and without the
condition variables were compared. All path analyses were
done with AMOS (Arbuckle and Wothke 1999). Statistical
significance was determined using a maximum-likelihood
bootstrap.

In the current instance we are not interested in testing the
path model. Instead we take the path model as a given and
use it to estimate selection. The path models were built by
a combination of logic and a priori information about each
system. For example, most of the traits were measured at
different times or represent different points in a develop-
mental sequence. Logic tells us that later traits can never be
causal on earlier traits, whereas earlier traits may or may not
be causal on later traits. We assumed, however, that simul-
taneous traits (e.g., floral traits in Raphanus, see below) were
not causal on each other, with correlations due to the joint
effects of earlier traits.

In such a use of a path model as ours, it is incorrect to
adjust the model based on statistical tests, for example, re-
moval of a path because it is not statistically significant. This
is similar to what is typically done in multiple regression
analyses of selection, where traits with nonsignificant selec-
tion coefficients are retained in the analysis. We emphasize
that the structure of the model is important; an incorrect
structure can increase bias. However, it is outside the scope
of this paper to test the model structures used here. Because
an incorrect structure would predispose our analyses against
reducing bias, our conclusions concerning the power of path
analysis to reduce bias are conservative and, thus, robust.

Agreement between the phenotypic and genotypic analyses
was assessed by calculating a correlation between sets of
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TABLE 1. Analyses of natural selection on Impatiens capensis. Values shown in bold are statistically significant (P < 0.05). See Figure 4 for

the path diagram.

Multiple regression (B)

Path analysis (3%)

Bias test

Trait P< Phenotypic Full-sib Phenotypic Full-sib
Seed mass 0.0001 2.71 22.31 1.43 4.58
Germination date 0.11 0.03 -0.11 ~0.05 —-0.03
Leaf length 0.14 0.18 0.14 0.37 0.21
Internode 1 length 0.26 0.10 0.19 0.10 0.13
Internode 2 length 0.75 0.24 —0.18 0.07 0.05
Number of nodes 0.86 ~0.03 —-0.47 0.06 -0.03
Number of branches 0.0001 0.22 0.58 0.20 0.62
Height 0.11 —0.07 —0.08 0.08 0.09
Number of flowers 0.01 0.18 0.11 0.47 0.58
Number of buds 0.28 0.07 —0.001 0.03 —0.05
Flowering interval 0.01 —0.03 —0.02 —0.02 —0.03
N 258 35 258 35

selection estimates (e.g., B calculated for the phenotypic and
genotypic data). If the path analysis method provides a less
biased estimate (B*) than the multiple regression estimate
(B), then the correlation between the phenotypic and geno-
typic data for the B* estimates will be higher than the cor-
relation for the B estimates. It would be incorrect to compare
the phenotypic B* estimates with the genotypic B estimates
because they are based on different causal models. Thus, we
are assuming that the genotypic path model provides a bias-
free measure of phenotypic selection. See Scheiner et al.
(2000) for a discussion of the issue of different causal models
of phenotypic selection.

Phenotypic estimates of selection could be biased in two
ways that can be assessed by examining the slope and in-
tercept of a linear regression of the genotypic B* estimates
on the phenotypic B* estimates. This regression asks how
well the phenotypic estimates predict the genotypic estimates.
If there is no bias, the regression will have a slope of one
and an intercept of zero. An intercept different from zero
would indicate a systematic tendency toward larger or smaller
selection coefficients at all magnitudes. A slope different
from one (with a zero intercept) would indicate a systematic
tendency toward overestimating or underestimating the ab-
solute magnitude of the selection coefficient. An alternative
measure of this second bias is the sum of the squared de-
viations of the phenotypic and genotypic coefficients

2": (BY — BP)? )
= 1sfl

where n is the number of traits and BS and BP are the genetic-

based and phenotypic-based selection coefficients, respec-
tively. The two methods were compared using the difference
in this index.

For all of these tests of bias, statistical significance cannot
be calculated because the estimates are not independent of
each other. Clearly the phenotypic and genotypic estimates
for a single trait are not independent. Also, the estimates of
selection of different traits within a path analysis are not
independent because the paths for some are contained within
others. Thus, we used our measures—correlation, slope, in-
tercept, and squared deviation—for comparative purposes
only.

RESULTS

For all three datasets, selection was detected for most traits
(Tables 1-3). Because our purpose here is to examine the
efficacy of path analysis to reduce environmental bias, we
forego a detailed analysis of patterns of selection. See the
original publications for those analyses. All three species
showed evidence for environmental bias in the phenotypic
selection estimates: four of 11 traits in Impatiens, five of six
traits in Arabidopsis, three of 14 traits for maternal fitness
in Raphanus, and two of 10 traits for paternal fitness in Ra-
phanus. For the multiple regression analyses, correlations
among the phenotypic, full-sib, and half-sib selection coef-
ficients () ranged from 0.13 to 0.99, with the lowest cor-
relations for the Raphanus phenotypic-half sib comparisons
and the highest correlation for the Impatiens comparison (Ta-
ble 4).

TABLE 2. Analyses of natural selection on Arabidopsis thaliana. Values shown in bold are statistically significant (P < 0.05). See Figure 5

for the path diagram.

Multiple regression ()

Path analysis (B*

)

Bias test

Trait P < Phenotypic Full-sib Phenotypic Full-sib
Leaf length 0.02 0.02 0.02 0.01 0.01
Number of rosette leaves 0.02 -0.02 -0.04 —-0.11 -0.12
Bolting date 0.33 —0.05 —-0.08 0.000002 —0.001
Flowering interval 0.0003 —0.003 —0.01 0.00001 —0.004
Number of inflorescence branches 0.0001 0.04 0.14 0.0003 0.11
Number of basal branches 0.004 0.04 —-0.02 0.10 0.09
N 289 36 289 36
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TABLE 3. Analyses of natural selection on Raphanus sativus. Values shown in bold are statistically significant (P < 0.05). See Figure 6 for

the path diagram.

A. Maternal fitness analyses

?;:ts Multiple regression (B) Path analysis (8*)
Trait P< Phenotypic Full-sib Half-sib Phenotypic Full-sib Half-sib

Seed mass 0.05 —0.003 —0.005 0.006 —0.0007 —0.0001 —0.006
Germination date 0.80 —0.01 —0.02 —0.10 —0.04 —0.008 —0.12
Days to flowering 0.06 0.003 0.004 0.05 0.03 0.05 0.08
Number of leaves 0.25 —-0.01 0.001 0.02 0.15 0.13 0.13
Style length 0.91 —0.003 —0.001 -0.16 —0.0007 —-0.02 0.05
Petal area 0.22 0.00003 —0.001 0.01 —0.0009 —0.007 —0.006
Pollen number/flower 0.03 0.0000001 —0.0000002 —0.00004 0.000002 0.000003 0.0000009
Pollen volume 0.29 0.00005 —0.00002 —0.0002 —0.00003 0.0001 —0.0002
Ovule number/flower 0.14 —0.01 0.003 —0.05 0.07 0.08 0.09
Number of flowers 0.06 0.002 0.002 0.0009 0.01 0.009 0.007
Seeds/fruit 0.91 —0.005 0.05 0.23 0.18 0.18 0.14
Offspring seed mass 0.97 0.09 0.10 0.05 0.10 0.11 0.12
Number of fruits 0.30 —0.003 0.002 0.02 0.03 0.03 0.02
Fecundity 0.05 0.005 0.004 0.002 0.005 0.005 0.004
N 484 76 19 484 76 19
B. Paternal fitness analyses

Bias Multiple regression (3) Path analysis (B*)

test

Trait P< Phenotypic Full-sib Half-sib Phenotypic Full-sib Half-sib

Seed mass 0.01 —0.0001 —-0.01 —-0.01 —0.0008 —0.0002 —0.005
Germination date 0.45 0.003 0.001 -0.02 —0.05 —-0.01 —-0.12
Days to flowering 0.08 —0.005 —0.01 —0.002 0.02 0.04 0.06
Number of leaves 0.79 —0.005 0.01 0.01 0.14 0.12 0.15
Style length 0.56 0.0001 —0.01 —-0.05 —0.0007 -0.02 0.07
Petal area 0.01 —-0.001 —0.002 —0.001 —0.0009 —0.01 —0.008
Pollen number/flower 0.97 0.000008 0.00001 0.000007 0.00001 0.00001 0.000009
Pollen volume 0.51 0.00001 0.00003 0.0001 —0.00004 0.0002 —0.0003
Ovule number/flower 0.08 -0.01 —0.01 —0.02 0.03 0.05 0.09
Number of flowers 0.48 0.01 0.01 0.01 0.01 0.01 0.01
N 484 76 19 484 76 19

The phenotypic and genotypic path analyses of the Im-
patiens data were very similar, with generally small changes
in the magnitudes of the path coefficients (Fig. 4). Only one
path coefficient, the path from the number of buds to fitness,
changed sign, and the magnitudes of those coefficients were
small. For Arabidopsis, again the signs of most coefficients
were the same in the two analyses, with a tendency toward
somewhat larger magnitudes in the genotypic analysis (Fig.
5). The most notable exception was the path from number of
rosette leaves to number of basal branches, which changed
from negative and of small magnitude to positive and of large

magnitude. For Raphanus there was also a tendency toward
path coefficients of larger magnitudes in the full-sib analysis
compared to the phenotypic analysis, and greater still in the
half-sib analysis (Fig. 6). In addition, six path coefficients
changed sign among the analyses, all involving phenology
or flower morphology traits. Changes in sign were generally
associated with coefficients of small magnitude.
Correlations between the phenotypic and genotypic selec-
tion estimates from the path analyses (B*) were higher than
those from the multiple regressions (B), with the exception
of the Impatiens analyses (Table 4). (Similar results [not

TABLE 4. Comparisons of selection measures of phenotypic and full-sib data (Impatiens and Arabidopsis) or phenotypic, full-sib, and half-
sib data (Raphanus): correlations (r) of regression analyses (B) and path analyses (3*) and slopes and intercept of regressions of genotypic B*
on phenotypic B* values. The squared deviation shows the difference of the sum of the square deviations of the multiple regression and path
analysis regression coefficients; a positive value indicates that the phenotypic multiple regression estimates deviate more from their genotypic
estimates than do the path analysis estimates.

Raphanus
Maternal Paternal
Comparison Impatiens Arabidopsis Pheno-full Pheno-half Full-half Pheno-full Pheno-half Full-half
g 0.993 0.703 0.870 0.170 0.499 0.520 0.125 0.729
Tae 0.963 0.812 0.975 0.896 0.844 0.936 0.855 0.757
Slope 3.087 0.670 0.929 0.974 0.961 0.794 1.220 1.273
Intercept -0.211 —0.010 0.005 —0.00001 —0.002 0.005 0.006 0.002
Squared deviation 24.922 0.076 0.024 0.474 0.317 —0.081 —0.072 —0.162
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FiG. 4. Phenotypic (A) and full-sib (B) path analyses of Impatiens. Arrow thickness is proportional to the magnitude of the standardized
path coefficient. Solid arrows denote positive coefficients and dashed arrows denote negative coefficients. For simplicity, variation due
to error is not included. See Table 1 for the direct selection coefficients.

shown] were obtained using standardized selection coeffi-
cients [B’ of Lande and Arnold 1983].) The conclusions about
the Impatiens analyses was strongly influenced by a single
trait, seed mass. If that trait is removed from the analyses,
the correlations decrease, but substantially more so for the
multiple regression analysis (r = 0.53), than for the path
analysis (r = 0.78). The squared deviations indicated a better
the fit for the path analyses for Impatiens, Arabidopsis, and
Raphanus maternal fitness, but worse for Raphanus paternal
fitness.

For all comparisons, the agreement between the phenotypic
and genotypic estimates from the path analyses was quite
good (0.76-0.96). The intercepts of the regressions of ge-
notypic B* estimates on phenotypic B* estimates all clustered
closely around zero, with the exception of Impatiens. The
slopes for the Impatiens and Raphanus half-sib paternal re-
gressions were greater than one (Tables 1, 3B), indicating
that the phenotypic path analyses tended to underestimate the
absolute strength of selection, particularly at large values of
B. In comparison, for Arabidopsis and the Raphanus full-sib
paternal comparisons, the slopes were less than one, indi-
cating that the phenotypic path analyses tended to overesti-
mate the strength of selection (Tables 2, 3B). The Raphanus
maternal fitness-half sib comparisons had slopes very close
to one.

Because these correlations could be dominated by a few
traits closely related to fitness, we also examined the cor-
relations between the phenotypic B* and genotypic B* esti-
mates for the set of traits that were intermediate between the
early vegetative traits and final fitness components. For Im-
patiens the traits were internode lengths, number of nodes,
and number of branches and the correlation (r = 0.992) was
even greater that of the entire set of traits. In contrast, for
Arabidopsis, after elimination of leaf length and number of
leaves, the correlation (r = 0.443) dropped substantially. For
Raphanus the traits were number of pollen grains, pollen
grain volume, style length, total petal area, and number of
ovules. The correlations were somewhat smaller than that for
the entire set of traits: 0.750 to 0.982 for maternal fitness
and 0.460 to 0.949 for paternal fitness, with the lower values
being associated with half-sib comparisons.

Another test of possible environmental effects is a re-anal-
ysis with a change in the path model, either adding a path
from a measure of condition directly to fitness or deleting
all condition measures. One then compares selection esti-
mates for traits that are downstream (i.e., to the right in the
path diagram) of the measure of condition. The comparison
consisted of a correlation of the selection coefficients esti-
mated from the two models (with and without condition
traits). For Impatiens the best measure of condition in this
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Phenotypic (A) and full-sib (B) path analyses of Arabidopsis. Arrow thickness is proportional to the magnitude of the standardized

path coefficient. Solid arrows denote positive coefficients and dashed arrows denote negative coefficients. For simplicity, variation due
to error is not included. See Table 2 for the direct selection coefficients.

experiment is leaf length. Adding a path directly from leaf
length to fitness had almost no change in the estimates of
selection on the phenotypic (r = 0.846) or genotypic (r =
0.999) analyses. Similarly deleting seed mass, germination
data, and leaf length traits resulted in no change in the se-
lection estimates (r = 1.000 for both). We also examined the
correlation between the phenotypic and genotypic estimates
with the new model, which was very similar to the same
correlation with the original model (» = 0.988 for the analysis
with the traits removed compared with » = 0.992 for the
same traits in the original analysis).

For Arabidopsis the best measure of condition in this ex-
periment is the number of rosette leaves. In this case, elim-
inating the path from number of leaves to number of fruits
decreased the concordance between the phenotypic and ge-
notypic estimates (r = 0.678). Comparing the selection co-
efficients estimated from the new and old models found large
differences for both the phenotypic analysis (r = 0.231) and,
especially, the genotypic analysis (r = —0.656).

For Raphanus the best measure of condition in this ex-
periment is the number of leaves at flowering. Adding paths
directly from leaf number to maternal and paternal fitness
made no change in the selection estimates (» = 1.000 for all
comparisons of new with old models). We also analyzed a
model deleting the preflowering traits (seed mass, germina-
tion date, days to flowering, and number of leaves). For com-
parisons with this model we focused on the floral morphology
traits (number of pollen grains, pollen grain volume, style
length, total petal area, and number of ovules). For maternal

fitness, the model change resulted in a substantial reduction
in the correlation for the phenotypic—half sib comparison (r
= 0.855 to r = —0.097 with and without, respectively) and
the full sib—half sib comparison (r = 0.749 to r = —0.688),
and a smaller reduction for the phenotypic—full sib compar-
ison (r = 0.982 to r = 0.766). These differences were pri-
marily due to a large discrepancy between the two models
for the estimates of selection for the half-sib data (r = 0.168).
A similar pattern was found for paternal fitness.

DISCUSSION

Selection coefficients estimated using path analysis ($*)
with phenotypic data were generally close to those estimated
from genotypic data. Correlations between the phenotypic
and genotypic estimates ranged from 0.76 upward. Bias in
our estimates tended to be expressed as a tendency to under-
or overestimate the strength of selection for the most extreme
values, especially in Impatiens. This tendency went in both
directions, with no systematic bias in one direction or the
other. The intercepts of the regressions were very close to
zero, again except for Impatiens. This conclusion is similar
to that of Stinchcombe et al. (2002), who found that envi-
ronmental bias tended to effect the magnitude of selection
estimates, rather than the sign. However, bias indicated as
discrepancies in selection estimates were not related to the
chance of a significant result in the environmental bias test
of Stinchcombe et al. (2002).

The correlations between the phenotypic and genotypic B*s
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Fic. 6. Phenotypic (A), full-sib (B), and half-sib (C) path analyses of Raphanus. Arrow thickness is proportional to the magnitude of
the standardized path coefficient. Solid arrows denote positive coefficients and dashed arrows denote negative coefficients. For simplicity,
variation due to error is not included. See Table 3 for the direct selection coefficients.

tended to be stronger than those for the Bs, suggesting that
bias, environmental or otherwise, existed in these datasets,
but was reduced by path analysis. Additional evidence for
environmental bias in two of the datasets comes from the
comparison of path analyses with and without the condition
variables. In the case of Impariens, analyses that changed the
path model by eliminating the condition trait had little effect

on the selection coefficients. This consistency suggests that
environmental effects on fitness were not strong, but could
also indicate that leaf size is not an accurate indicator of
condition because it was measured on young plants. In con-
trast, in the case of Raphanus the accuracy of the phenotypic
B*s was likely due to the ability of the path model to account
for environmental effects. As expected if environmental ef-



REDUCING BIAS IN SELECTION ESTIMATES

fects were present, the two genotypic estimates using the full-
sib and half-sib data were more highly correlated with each
other than either were with the phenotypic data. More im-
portantly, removing the vegetative traits through which en-
vironmental effects likely manifest themselves significantly
degraded the agreement between the phenotypic and geno-
typic estimates. Most interesting was the case of Arabidopsis
where we expected environmental effects to be minimal. In-
stead, removal of the path between the measure of condition
and fitness substantially degraded the accuracy of the phe-
notypic selection analysis. So, either there was substantial
uncontrolled environmental heterogeneity in the experiment
or leaf number has an important direct effect on fruit set
independently of its effect through flowering traits. Of our
three datasets, this experiment showed the greatest evidence
of environmental bias by the test of Stinchcombe et al. (2002).

Our results are consistent with a recent comprehensive
literature survey of natural selection (Kingsolver et al. 2001).
They found that estimates of direct selection () from phe-
notypic regression analyses were highly correlated with total
selection estimates (s), indicating that indirect selection was
small. Because environmental effects would most likely man-
ifest as changes in indirect selection (Figs. 1, 2), indirect
selection will likely be weaker when environmental effects
are minimal.

Use of Latent Variables

In this paper we used path models that only included mea-
sured variables. Condition can be treated as a latent variable,
however, one that is not directly measured but is a function
of measured variables. Such an approach has several advan-
tages when we wish to focus only on selection of a subset
of the traits. In such a case the form of the model relating
the other traits to condition does not matter. For example, it
does not matter if one of these other traits effects the target
trait directly and not through condition. Such an error in the
model will mean that the path coefficients between condition
and the target trait and between condition and fitness are
incorrect. But we would pay no attention to these values. See
Crespi and Bookstein (1989) and Pugesek and Tomer (1996)
for other examples of the use of latent variables in selection
analysis; in those examples it is selection on the latent var-
iable that is of interest, in contrast to the current case. For
the data analyzed here, we only had one or two traits that
represented measures of condition, obviating the need for a
latent variable.

Phenotypic versus Genotypic Analyses

A. Winn (unpubl. ms.) looked for evidence of environ-
mental bias in an analysis of selection on leaf traits in Di-
cerandra linearifolia (Lamiaceae). She found that selection
gradients from genotypic analyses were never statistically
significant and that the magnitude of the phenotypic gradients
were larger than the genotypic gradients for four of seven
traits; she concluded that environmental bias may be more
common than previously thought. The datasets presented here
likewise showed evidence of environmental bias, but the path
analyses that included a measurement of condition were able
to decrease that bias. Winn measured only leaf morphological
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traits and had no measure of condition, so the environmental
bias acting through condition was not controlled for in her
phenotypic selection analyses. Yet, for her estimates of linear
selection the correlation between her phenotypic and geno-
typic estimates was 0.997, whereas the slope and intercept
were 4.791 and —0.487, respectively, similar to what we
found for Impatiens. Stinchcombe et al. (2002) also con-
cluded that environmental bias tends to effect the magnitude,
rather than the sign, of selection coefficients.

If the causal structure for an organism is as depicted in
Figure 3, then even a multiple regression will reduce bias for
selection coefficients of the trait of interest (z;). This reduc-
tion would not hold for all traits, especially for more complex
causal structures (e.g., in Figs. 4-6). However, it would ex-
plain why the phenotypic multiple regression analyses were
often in reasonable agreement with the parallel genotypic
analyses, even in the face of apparent environmental bias
(e.g., Arabidopsis; Tables 1, 4). Thus, we might have guarded
confidence that previous selection analyses (see summary in
Kingsolver et al. 2001) are at least qualitatively correct, with
the caveat that our analyses did not explore the accuracy of
stabilizing/disruptive selection estimates.

Winn’s observation of nonsignificant genotypic selection
gradients was likewise reflected in the analyses presented
here. In our data (Tables 1-3), B and B* were statistically
significant much less often for analyses with genotypic data
even when the magnitudes of the coefficients were larger
(e.g., estimates of B for bolting date in Arabidopsis and B*
for days to flowering and paternal fitness in Raphanus). This
concurrence results from the inevitable fact that the power
of analyses based on genotypic data will always be lower
than analyses based on phenotypic data. Selection studies
must contend with both environmental bias in phenotypic
analyses and the difficulty of executing a genotypic design
that nonetheless has low statistical power. A path analysis
approach has the potential to alleviate both problems. We
also note that in a direct comparison of a path analysis and
a multiple regression using the same data (e.g., phenotypic
data) the path analysis will have greater power because the
total model estimates fewer coefficients. That difference is
not always appreciated because we typically do not consider
the covariances among the independent variables in a mul-
tiple regression as part of the estimated parameters.

Path analysis is not a panacea, however. There may be
environmental factors that can directly affect fitness that are
not captured by measures of condition. For example, nitrogen
may be limiting for production of both pollen and herbivore
defense compounds. How common such examples are is an
empirical question. Early-life traits might have causal effects
on condition, thus not allowing one to factor out environ-
mental biases. In addition, one must have knowledge of which
traits accurately indicate condition. However, although ge-
notypic estimates are less biased, they require manipulated
individuals. Because any manipulation potentially changes
the environment, such experiments themselves may bias es-
timates of selection coefficients. Thus, path analysis provides
a measurement context that may be less intrusive and more
accurate.

A complementary approach to that outlined in this paper
is to directly measure the environment and include environ-
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mental parameters in the analysis (e.g., Donohue 1999). As
in this paper, a path analytic framework can be used to in-
corporate environmental effects, although, as always, one can
never be sure that all relevant parameters have been mea-
sured. Observed effects may be due to some unmeasured,
correlated parameter. Some of these problems can be ad-
dressed by experimental manipulation of environmental pa-
rameters that, again, can be incorporated into a path analysis.

In this paper we examined whether a phenotypic analysis
using path analysis is sufficient for assessing the most im-
portant qualities of natural selection—such as whether se-
lection is strong or weak, positive or negative, stabilizing,
directional or disruptive—and concentrated on the entire pat-
tern, not just those coefficients that were statistically signif-
icant. As pointed out by A. Winn (unpubl. ms.), genotypic
analyses are both valuable and difficult. If we rely on them
alone and simultaneously commit ourselves to a level of sta-
tistical significance that is unnecessary and unachievable, we
are potentially trapping ourselves into an inability to ever
say anything about patterns of natural selection. We do not
deny the importance of statistical inference in guiding sci-
entific inquiry. Rather we stress that a scientific inquiry needs
to consider the total evidence when reaching any conclusions
(Scheiner 2003).

Conclusions

We found that estimates of phenotypic selection calculated
using path analysis were not compromised by environmental
bias when compared to genotypic estimates. Our conclusions
give us confidence that we can rely on phenotypic estimates
in other instances where genotypic estimates are difficult or
impossible to obtain.

In the current paper, the path model was assumed a priori
and then used to estimate selection coefficients. Because of
the strong dependence of results on the hypothesized causal
structure, it is important that one has confidence in the path
model. The model can be built from a combination of logic,
biological knowledge, and experiments (but for another ap-
proach, see Shipley 1997), as well as formal model testing
(Shipley 2000). Model building and testing is an important
exercise that takes place prior to the issues that we raise in
this paper (Shipley 2000).

Path analysis is a powerful technique for incorporating
causal relationships among traits into selection analyses and
showing how those causal relationships create the linkage
between a trait and fitness (Scheiner et al. 2000 and references
therein). Our use of path analysis in this paper does not fully
explore it possibilities. Analyzing selection in a path-analytic
framework promises to provide a better understanding of nat-
ural selection by more accurately indicating when during the
life cycle selection is operating (Arnold 1983). Scheiner et
al. (2000) showed how the discrepancy between estimates of
total selection (s) and the predicted covariance (s*) provides
clues about the possible importance of unmeasured traits and
how stabilizing selection can be analyzed by path analysis.
Path analysis and multiple regression assume different causal
structures and the use of path-analysis-generated selection
coefficients in response to selection equations is still unex-
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plored. All of these uses of path analysis provide a richer
view of natural selection.
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