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Opinion
Glossary

Canalization: the process of reducing variation; for example, among indivi-

duals in a population with respect to phenotypes that they express. For

phenological traits, this can manifest as synchronization in developmental

times.

Developmental threshold: the accumulated amount of ‘developmental time’

required for a given developmental stage to allow a transition to the next

developmental stage. The time required is in developmental units (e.g.,

thermal time, degree days) rather than in calendar time units. Once a threshold

level of developmental time has accumulated, the developmental transition

occurs.

Developmental threshold model: a model used to predict the timing of a

developmental transition. The timing of developmental transitions from one

state to the next is modeled as a function of dynamic environmental factors

that influence the accumulation of developmental time (see developmental

threshold). Once a threshold level of developmental time has accumulated, the

developmental transition occurs.

Habitat selection: the ability of an organism to determine (select or choose) the

environment that it is exposed to.

Heritability: the proportion of total phenotypic variance that is genetic variance

(i.e., caused by genetically based differences in phenotypes); total phenotypic

variance includes both genetic and environmental variance. Higher heritability

enables larger responses to selection, for any given strength of selection.

Maternal effects: also termed ‘maternal environmental effects’. The influence

of the environment experienced by maternal parents on the phenotype of their

offspring.

Phenology: the timing of biological events such as germination, flowering, and

bud break in plants or hatching, metamorphosis, and reproduction in animals.

Population-based threshold models (PBTMs): developmental threshold mod-

els that incorporate variation among individuals in a population with respect to

developmental responses to environmental (or other) inputs.

Pleiotropy: the phenomenon in which one gene regulates more than one trait.

Process-based model: a model describing how a physiological process

responds to environmental factors that is often used to predict developmental

outcomes.

Quantal: a quantal response or trait is discontinuous and transitions from one

discrete state to another; for example, from non-germinated to germinated or

vegetative to reproductive. The phenotypes of quantal traits are frequently

expressed as the percentage or proportion of individuals completing the

developmental transition.
Process-based models of development predict develop-
mental rates and phenology as a function of physiological
responses to multiple dynamic environmental factors.
These models can be adapted to analyze diverse process-
es in evolutionary ecology. By linking models across life
stages, they can predict life cycles and generation times.
By incorporating fitness, they can identify environmental
and physiological factors that limit species distributions.
By incorporating population variance, they can investi-
gate mechanisms of intraspecific variation or synchroni-
zation. By incorporating genetics, they can predict
genotype-specific phenology under diverse climatic sce-
narios and examine causes and consequences of pleiot-
ropy across life stages. With further development, they
have the potential to predict genotype-specific ranges
and identify key genes involved in determining phenology
and fitness in variable and changing environments.

Modeling phenology to understand evolutionary
ecology
Changes in phenology (the timing of developmental events;
see Glossary) in response to changing climate are widely
observed and can have critical consequences for organismal
fitness and population performance [1–5]. Phenology deter-
mines which life stages are exposed to which seasonal
conditions and thus can strongly affect life-history expres-
sion, generation time, and population dynamics. Predicting
phenological responses to different climatic environments is
therefore important for understanding how organisms,
populations, and species will respond to future climate
change.

Process-based developmental models are powerful tools
for predicting phenology under complex natural conditions
(e.g., [6–17]). Such models use dynamic environmental
inputs to predict developmental rates and the timing of
phenological transitions. Historically they have been
employed primarily in agronomic applications or ecological
projections of important events such as bud break or insect
emergence dates. However, such models also have potential
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to provide insight into diverse ecological and evolutionary
processes, including species range limits, phenotypic plas-
ticity in response to complex dynamic environments, and
causes of phenotypic and genetic variation within and
among populations.

Here we discuss some potential applications of these
models to evolutionary ecology. First, we describe how
Reaction norm: the function that describes how a single genotype alters its

phenotype in response to the environment.

Sensitivity threshold: the lower limit of a regulatory signal (environmental,

hormonal, biochemical) that elicits a phenotypic response in an organism.

When the signal level exceeds the threshold sensitivity, developmental time

can accumulate. Sensitivity thresholds are physiologically determined and can

be increased or decreased in response to environmental signals or develop-

mental transitions and can vary among individuals.
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process-based developmental models, and developmental
threshold models in particular, predict the timing of de-
velopmental transitions in complex environments and dis-
cuss how linking models of multiple life stages across the
life cycle captures important dynamics in life cycle expres-
sion. Next, we discuss how further development of these
models makes them applicable to addressing important
issues in evolutionary ecology, specifically by incorporating
fitness, population variance, and genetic differences among
individuals.

Developmental threshold models: predicting phenology
and life cycles in complex environments
Developmental threshold models predict the rate of devel-
opment from one life stage to another, given a sequence of
environmental conditions (Box 1). ‘Developmental units’
accrue over time according to relationships that describe
developmental rate as a function of sensitivities to envi-
ronmental factors. The effects of multiple environmental
factors can be combined to define the rate of accumulation
of developmental units. Once a threshold number of devel-
opmental units is attained, the developmental transition
occurs; for example, the transition from seed to germinant
or from egg to larva. This is an extremely flexible frame-
work for predicting phenology in dynamic, complex envir-
onments. These and other models of phenology and
developmental rates (e.g., [1,18,19]) have been successful
in predicting the timing of phenological transitions, devel-
opmental rates, and growth rates more generally.

Individual developmental threshold models predict the
timing of a single developmental transition. Linking mul-
tiple models of developmental transitions throughout the
life cycle allows predictions of overall life cycle expression
and the total amount of time required to complete a life
cycle, or the generation time. Generation time is demo-
graphically important because it determines the number of
generations that can be completed within a growing season
and therefore influences population growth rate.

Linking individual developmental threshold models
across the life cycle also incorporates an important dynam-
ic that occurs in organisms developing in the wild: the
timing of prior life-stage transitions determines the envi-
ronmental conditions experienced by subsequent life
stages, both within and across generations [20]. Environ-
mentally cued phenology thereby acts as a form of habitat
selection (Figure 1A), leading to important effects of one
life stage on the following stages because the environment
determined by one life stage affects the phenotypes
expressed subsequently.

Linked developmental models incorporate these dynam-
ics directly. They have been applied to predict bud break
and fruit-maturation timing in trees [21], reproductive
timing in crops [22,23], overall life cycle expression in
annual plants [24], and the number of insect generations
completed per season [25]. These models illustrate why
accurate predictions of phenology and total generation
time can be made only by incorporating the effects of the
phenology of prior life stages on the environmental condi-
tions that are experienced by subsequent ones. For in-
stance, an empirically validated photothermal model
[26] showed that flowering time and the expression of
2

summer annual, winter annual, or autumn-flowering life
histories depends critically on the seasonal timing of ger-
mination because germination time determined the
amount of time before winter temperatures became pro-
hibitive for further development.

The opportunity also exists to model cross-generational
influences of maternal environmental effects by linking life
stages across generations. The timing of reproduction
determines the environmental conditions experienced dur-
ing embryo development as well as the conditions that
progeny are born or dispersed into. Maternal effects are
known empirically to influence the expression of plant life
histories [27,28], insect egg size and thereby growth rates
[29], and even the demography of pest outbreaks ([30];
reviewed in [31]). They can be incorporated into develop-
mental threshold models by allowing the progeny’s devel-
opmental parameters to be defined as a function of
maternal environmental factors.

Linked developmental threshold models can be used to
predict overall life cycle expression across a geographical
range or in novel climatic conditions. For example, Bur-
ghardt et al. [24] linked models of the timing of germination,
flowering, and dispersal of Arabidopsis thaliana to show
how the dynamics of all three processes contribute to the
generation time and life-history variation that has been
observed across its native range (Figure 1B,C) [24]. Wilczek
et al. [32] predicted seasonal shifts in the flowering phenol-
ogy of A. thaliana as a function of germination time across
the species range under future climatic conditions.

Sensitivity analysis of these models can identify key
physiological parameters that have the largest effect on
phenology and life cycles (Box 2). For example, Burghardt
et al. [24] found that changes in the seed dormancy of A.
thaliana had larger projected effects on generation time
than did changes in parameters affecting flowering time,
based on a range of parameters known to occur in that
species. Sensitivity analyses can also identify key environ-
mental factors with the largest effect for any given set of
physiological parameters (individual or genotype). For
instance, Andreini et al. [33] found that early-flowering
cultivars of fruit trees are most impacted by daily mini-
mum temperatures because of their chilling requirement
for bud dormancy release, while later-flowering cultivars
are influenced primarily by daily mean temperatures.

In summary, developmental threshold models can be
linked across the life cycle and across generations to pre-
dict integrated life cycle expression in complex environ-
ments, capture the important dynamics of habitat selection
via developmental cuing and of maternal environmental
effects, and project the expression of life cycles and gener-
ation times across present ranges and future climatic
scenarios. When combined with sensitivity analysis, the
models provide testable predictions about which physio-
logical processes or environmental factors are most influ-
ential on life-history expression.

Incorporating fitness to predict species ranges
A crucial step toward adapting developmental and pheno-
logical models to applications in evolutionary ecology is to
incorporate fitness consequences of developmental timing.
Models that predict the seasonal timing of each life stage



Box 1. Developmental threshold models

Modeling rates of development as a function of variable environ-

ments

Developmental threshold models predict the timing of a develop-

mental transition; for example, from seed to seedling or from egg to

larva. The timing of that event is determined by stage-specific

developmental rates, which are modeled as a function of temporally

variable environmental inputs (Figure IA) (see Figure 1 in main text for

further explanation of environmental factors depicted in the lower

panel) and physiological responses to those inputs (Figure IB).

These models have an explicit temporal component. Developmen-

tal progress is calculated for small time intervals (e.g., hours or days),

based on environmental conditions experienced during that time

interval. Cumulative developmental progress is then summed over

the time intervals.

The models estimate developmental progress of different life

stages separately (e.g., seeds compared with vegetative seedlings).

Each life stage can exhibit its own physiological responses to

environmental conditions that regulate its rate of development

toward the next life stage. This rate of development is a function of

multiple dynamic environmental factors, or input signals. Typically,

input signals are environmental, such as time at a chilling

temperature, water availability, or ambient temperature. However,

they can also be physiological, as in the level of a hormone required

to cause a developmental transition. Most developmental models

have factors that promote developmental progress as well as

repressive components that reduce progress despite those promo-

tive signals.

Developmental thresholds determine the timing of developmental

transitions

A threshold level of developmental progress (developmental

threshold), once attained, triggers the developmental transition

(Figure IA; in this case from seed to seedling). This event occurs at

a specific time, which determines the timing of that developmental

event. The timing of this event therefore depends on what the

environmental inputs were over the course of development and how

that life stage responds to those inputs.

Physiological mechanisms of developmental responses to environ-

mental factors

Physiological mechanisms underlying environmental responses

are diverse and depend on the organism and the life stage being

considered. For example, the rate of development from seed to

germinant depends on soil water potential, C (Figure IB, left), such

that if the soil is too dry (below Cb) no development will occur, but as

ambient C approaches that of pure water development occurs

increasingly faster. Likewise, developmental rate can depend on

temperature (Figure IB, center), such that developmental rate

increases with increasing temperature, up to the optimal temperature;

above the optimal temperature, the developmental rate declines with

increased temperature. Photoperiod (Figure IB, right) regulates the

timing of flowering in many plants. For long-day plants, little progress

toward flowering is made when the photoperiod is less than a critical

length, photoperiods longer than the minimum result in develop-

mental time accumulation toward the flowering transition, and further

increases in photoperiod do not increase developmental rate.
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Figure I. (A) Schematic of a developmental threshold model. Bottom panel shows environmental factors that vary over a season (see Figure 1 for more details) and that

influence the rate of development. Upper panel depicts the accumulation of developmental progress over time, for the developmental transition of seed to seedling. (B)

Functions of how developmental rates respond to three environmental factors. From left to right: soil moisture, temperature, and photoperiod.
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and thereby the environmental conditions experienced at
each life stage, combined with knowledge of stage-specific
environmental vulnerabilities and productivities, can be
used to predict stage-specific survival and reproduction
[34]. Such models have been used to predict the probability
that organisms can complete their life cycles and reproduce
successfully under particular environmental conditions
(see Figure IA,B in Box 2).
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Figure 1. An integrated life cycle model to predict genotype-specific phenology and generation time across a species range. (A) General structure of an integrated model

that links three developmental threshold models across life stages, based on the annual plant Arabidopsis thaliana. Environmental inputs over the course of a year (bottom

panel) influence developmental rates of three life stages. The bottom panel shows environmental inputs over the course of a single year: photoperiod (smooth black line);

precipitation events (vertical gray lines); and temperature (continuously varying gray lines). Beginning with the seed stage (second panel from bottom), progress toward

germination proceeds in response to the environmental inputs of water availability and temperature. Green versus blue lines indicate different ‘genotypes’ with different

parameter values for dormancy that reflect natural allelic variants known to occur in A. thaliana: low dormancy (green); and intermediate dormancy (blue). The multiple

lines for each genotype represent random variation among individuals within a genotype in their rate of progress toward germination. Once the developmental threshold

has been attained (transition to the next panel), seeds germinate and become vegetative rosettes. These rosettes experience environmental conditions determined by the

time of germination (black arrows) and different individuals experience different environments because they germinated at different times. Rosettes progress toward the

(Figure legend continued on the bottom of the next page.)
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Process-based developmental modeling approaches
have been proposed to predict environment-dependent
survival of animals as a function of the maintenance of
energy and mass balances determined by specific develop-
mental processes in specific environmental conditions
[35]. These models have been applied to predict environ-
ment-dependent survival of amphibians [36], insects [37],
and other organisms (reviewed in [35]). In plants, biochem-
ical and developmental pathways have informed process-
based models of stage-specific growth rates [19,38].

Process-based models of phenology have been combined
with models of environment-dependent survival and re-
productive success to predict species distributions ([39])
(see Figure IC in Box 2). Considering stage-specific envi-
ronmental tolerances offers much greater resolution than
standard environmental niche modeling approaches to
predicting whether a species can occur in a specific location
or climate. In novel climatic conditions or geographical
locations, knowing what conditions would be experienced
by different life stages, given phenological responses to the
altered climate, would be useful for predicting overall
performance and probability of persistence and could be
used to identify vulnerable life stages.

Sensitivity analysis of models that integrate phenology
and fitness can be used to identify developmental processes
and environmental factors that are predicted to have the
strongest influence on species distributions across extant
or past ranges [40] or under future climatic scenarios (Box
2). Such analyses could be useful for predicting range
changes of problematic or threatened species and which
life stages are most influential. For example, one study of
the dengue mosquito predicted the consequences of evolu-
tion of desiccation resistance at the egg stage for the
persistence of the dengue mosquito across its present
range and for establishment in novel locations [18].

The parameterization of process-based models is labor
intensive and species-specific, whereas correlational
approaches to predicting species distributions (such as
environmental niche modeling) are much faster and broad-
ly applicable. It has been argued, however, that process-
based models have improved accuracy of prediction under
environmental extremes and under nonequilibrium condi-
tions such as environmental change and species range
expansions [41]. Recently, there has been much explora-
tion of how to combine these approaches and to use diverse
information, including current distributional data, to
transition to flowering in response to temperature, photoperiod, and winter chilling. Onc
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parameterize process-based models (‘inverse modeling’).
For example, physiological information has been used as
priors in Bayesian estimates of parameters [42] and those
were then used to predict species distributions in nonequi-
librium conditions [43,44].

Incorporating variance to investigate mechanisms of
canalization or asynchrony
Many process-based models predict the mean behavior of
populations without consideration of the variation around
the mean [45]. Within populations, however, individuals
often vary widely in their responses to environmental
signals. This variation determines the strength of natural
selection and the potential for evolutionary responses to it.
To apply developmental and phenological models to issues
of evolutionary ecology, environmental and genetic varia-
tion among individuals must be considered.

Population-based threshold models (PBTMs) (Box 3)
can be used to model population variation in developmen-
tal responses to environmental inputs. Such models spe-
cifically incorporate variation among individuals in a
population as an explanatory parameter to predict a given
developmental event. In these models, the developmental
event is fundamentally a quantal response in which an
individual either has or has not passed through the event.
Virtually any developmental transition where the pheno-
typic data are in the form of percentages or probabilities is
quantal data at the individual level and many responses
that are considered to be continuous or quantitative are
actually quantal at a lower level of biological hierarchy. For
example, seed germination is quantal in that an individual
seed germinates or not, but the probability of germination
or the percentage of a seed population that germinates is a
continuous trait. Likewise, continuous quantitative devel-
opmental processes at the whole-organism level might be
the outcome of quantal responses of individual cells
(reviewed in [46]).

In these models, individuals in the population vary in the
values of their developmental thresholds required for phase
transition or in their sensitivity to the environmental signals
that drive the accumulation of developmental time (Box 3).
In the former case (see Figure IA in Box 3), the rate of
accumulation of developmental time is the same among
individuals in the same environment, but their cumulative
requirements for the developmental transition vary. Alter-
natively, when individuals vary in their sensitivity to the
e the threshold is reached (transition to next panel), seeds are matured at a rate that

 begins again. Note how the phenotypic differences among individuals within and
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gain in October. Such mixed life histories are observed in the field in this location.

tions (x-axis) for ‘genotypes’ with low, intermediate, and high seed dormancy.

atitudinal range of A. thaliana. Simulations used data for 40 years and the model

rences among genotypes are much more pronounced in northern latitudes than in
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line that connects these stars shows that a generation time of close to 365 days is

pears to be able to canalize an annual life cycle across the geographical range of A.
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Box 2. Predicting phenology and species’ distributions: examples with forest trees

Process-based models of phenology have been combined with

models of environment-dependent fitness to predict species distribu-

tions. Much of this effort has been applied to predict the distributions

of tree species.

Predicting phenology

Tree phenology has been modeled using process-based models of

development that depend on temperature, photoperiod, and chilling

effects on bud dormancy and subsequent growth [1,17] (Figure IA).

Such models have been used to identify specific environmental

factors and developmental processes that most strongly influence

phenology throughout a species range.

From phenology to fitness

Phenology is an important determinant of fitness [1,70] because it

determines the exposure of specific life stages to season-specific

environmental stressors or environmental requirements for develop-

ment and because it determines the time available to complete

important processes such as fruit maturation (Figure IA). Phenology

models have been linked to models of environment-dependent

survival and reproduction to predict the probability that organisms

can successfully reproduce under particular environmental condi-

tions. PHENOFIT [1] is a process-based model that predicts tree

phenology, survival, and reproductive success under different

environmental scenarios; the probability of survival depends on

tolerance to drought and frost and the probability of successful fruit

maturation depends on the probability of frost damage to flowers,

developing fruits, and leaves and the temperature-dependent rate of

fruit maturation.

Predicting species distributions

Organismal distributions are defined by the conditions that permit

the organism to survive and reproduce. Phenological models that are

combined with models of environment-dependent survival and

reproduction can predict the conditions under which organisms with

specific developmental attributes are able to persist and thereby

predict range limits of genotypes, ecotypes, or species. Such analyses

can use future climate scenarios to project future species distributions

and can evaluate the effect of specific environmental factors on

distributions. For example, Scots pine in France is predicted to lose

much suitable habitat in the future, caused primarily by changes in

temperature rather than changes in precipitation [71]. Such analyses

can also identify key developmental responses that limit distributions.

In temperate tree species, Morin et al. [54] found that failure to mature

fruits before frost set the northern and high-altitude range limit of

some tree species in North America and an inability to break flower

bud dormancy set the southern range limit (Figure IC).
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Figure I. (A) Summary of the structure of PHENOFIT, a process-based model that

predicts geographic ranges as a function of phenological responses to

temporally variable climatic environments. (B) Results comparing the observed

distribution of Scots pine to the distribution predicted by PHENOFIT in present

climatic conditions (upper) and in future conditions (lower). (C) Summary of

results that identify key biological processes (indicated in key) that limit the

geographic distribution of Quercus macrocarpa.
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Box 3. Population-based threshold models

Population-based threshold models (PBTMs) are illustrated here

using a simple hydraulic analogy. A tank of water represents the

input of environmental signals (X; such as temperature, water

potential, day length). The levels of outlets from the tank represent

the sensitivity thresholds of individuals in the population (Xb) to the

signal. The rate of developmental progress is proportional to the

amount by which the signal exceeds the sensitivity threshold (X – Xb).

The cups represent the amount of developmental time accumulation

required for the transition (uX); when the cups are full (time ti), the

transition occurs for that individual.

Shared sensitivity thresholds

The simplest PBTM is commonly used for thermal time or heat unit

analyses (Figure IA), where X is the temperature, Xb is the base

temperature below which developmental progress is not made

(assumed to be the same for all individuals), and uX(i) is the

accumulated thermal time required by individual i for the develop-

mental transition that occurs at calendar time ti. A normal distribution

of uX(i) values will result in a sigmoid developmental progression

through the population over time.

Different sensitivity thresholds

A common situation occurs when the developmental time require-

ments (uX) are the same among individuals but their sensitivity

thresholds vary [Xb(i)] (Figure IB). The rate of developmental

progression of each individual is proportional to the difference

between its own threshold and the signal (or dose) level. In this case,

a normal distribution of thresholds in the population results in a right-

skewed time course of developmental transitions, which describes

many population-based biological phenomena, such as seed germi-

nation.

Change in environmental signal

If the environmental signal decreases, the model automatically

increases the time to the developmental transition for each individual

in the population (ti) according to their sensitivity thresholds

(Figure IC). If the signal level is below the threshold for a fraction of

the population, that fraction never achieves the transition (i.e., the

time course reaches a plateau below 100%) and the developmental

rates of the remaining members of the population are reduced in

proportion to the amount by which the signal still exceeds their own

thresholds [X – Xb(i)].

Change in sensitivity threshold in response to a change in the

environmental signal

The sensitivity of organisms to environmental signals is generally

under physiological control and can be adjusted in response to

conditions, as illustrated by changing the positions of the outlets on

the tank (Figure ID). If the sensitivity thresholds are shifted to a lower

level (often accompanied by a reduction in variance), such as by after-

ripening or vernalization, rapid and synchronous developmental rates

can be restored even at a reduced environmental signal level.
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Figure I. Schematic of population-based threshold models. See text in Box 3 for

further explanation of each panel.
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environmental signal, their developmental time accumula-
tion will progress at different rates even in an identical
environment (see Figure IB–D in Box 3). Thus, PBTMs
can model not only the mean time of a given transition,
but the degree of population synchrony or temporal disper-
sion. PBTMs can model a wide range of phenomena by
varying the population distributions of the developmental
time requirements or of the sensitivity thresholds for per-
ception of the environmental signal [47–49], including the
probability of a developmental event under a given environ-
mental scenario, the percentage of the population undergo-
ing a developmental event at any given time, and the
distribution of that event over time.

Populations, moreover, can comprise multiple subpopu-
lations having different response parameters (e.g., [50])
and organisms perceive and respond to multiple environ-
mental signals. The effects of both multiple subpopulations
and multiple simultaneous signals can be modeled by
combining the contributions of each toward reaching an
overall developmental threshold [51,52].

When integrated across life cycles, developmental mod-
els of populations can investigate causes of synchroniza-
tion or expression of variance in phenology (Figure 1A). For
example, the model of Wilczek et al. [26] suggests that
individual variation in germination timing in late summer
might inflate variation in flowering time, whereas individ-
uals germinating over several months in autumn might
flower in relative synchrony – a hypothesis that could be
tested with a PBTM. With such analyses, mechanisms of
population synchronization, variance generation, and
resynchronization across a life cycle can be explored, as
well as the generation of phenotypic variance underlying
bet-hedging.

Incorporating genetics to predict reaction norms,
environment-dependent genetic expression, and
genotype-specific phenology
Quantitative-genetic variation in physiological parame-
ters [18,53] or population-genetic differences in anony-
mous alleles regulating a physiological process have
been integrated with developmental models to predict
survival under specific environmental regimes. Genetic
variation can be incorporated into developmental thresh-
old models by assigning a specific set of parameter values
to different genotypes; the developmental phenotypes of
each genotype can then be compared in different environ-
mental scenarios. This approach has been applied to pre-
dict responses of different species [54] or ecotypes in
models of species-wide ranges [1,33,40].

When the developmental phenotypes (e.g., timing of
germination, flowering) of genotypes with different param-
eter values are simulated in different environmental sce-
narios, reaction norms can be predicted (e.g., [26]). This
approach can further predict the environmental scenarios
that elicit the least or greatest phenological differences
among genotypes: that is, it offers a method to predict
environment-dependent genetic variance in complex envir-
onments. For example, Burghardt et al. [24] found that
phenotypic differences in generation time among geno-
types are predicted to be greater in northern than in
southern latitudes (Figure 1C). Wilczek et al. [26] found
8

that phenotypic effects of specific flowering-time alleles are
most apparent when germination occurs during a 2-week
window in early autumn, but were barely detectable when
germination occurs at other times of the year. Therefore,
these models can predict phenotypic differences among
genotypes under different environmental scenarios or dif-
ferent genetic backgrounds. When combined with analysis of
variance within genotypes, as discussed above, predictions
of environment-dependent heritabilities may be possible.
Environment-dependent genetic variances and heritabil-
ities have been documented for decades; some environments
mask genetic differences while others enhance them
[55]. The ability to predict such environment-dependent
genetic differences would be valuable for assessing environ-
mental conditions that are likely to promote evolution by
natural selection and those that would not.

When information on the function of specific genes is
available, models can compare how allelic changes in
specific loci would alter individual developmental process-
es or entire life cycles (Box 4) (e.g., [23]). For example,
Wilczek et al. [26] modeled effects on flowering phenology
of mutant alleles in environmental signaling pathways
that caused plants to be unable to perceive specific season-
al cues. This analysis assessed how disruption of specific
pathways would affect phenology and was then used to
predict genotype-specific responses to climate change
across a species range [32].

There is increasing potential to incorporate informa-
tion on molecular-genetic pathways of environmental reg-
ulation of development into developmental threshold
models. Studies of environment-dependent gene expres-
sion can identify the genes most sensitive to specific
environmental inputs (e.g., for germination [56]). In some
cases, the relationship between expression levels of par-
ticular genes and key developmental processes is known.
For example, expression levels of the gene FLOWERING
LOCUS C (FLC), which change in response to winter
chilling, determine the degree of floral repression in Ara-
bidopsis [57–59], which has been used as a parameter in
developmental threshold models of flowering time. Such
information on environment-dependent gene expression
combined with knowledge of the relationship between
expression level and key developmental transitions
enables the merging of genetic pathways models with
developmental threshold models of specific life stages
and of entire life cycles (Box 4). For example, Satake
et al. [60] modeled seasonal expression of FLC and
the flowering promoter FLOWERING LOCUS T (FT) to
describe accurately the seasonal timing of flowering and
vegetative reversion in field populations of the perennial
Arabidopsis halleri and used this model to predict that a
warming climate will cause significant decreases in the
length of the reproductive period.

It remains to be determined how changes at the gene or
cell level are transduced into developmental transitions at
the tissue or organ level. Individual cells can switch
abruptly between developmental states based on the com-
plement of transcription factors present in each cell, but
developmental threshold models that posit gradual accu-
mulation of developmental progress can accurately de-
scribe both mean trends and variation in developmental



Box 4. Building genetic pathways into developmental threshold models

Developmental threshold models derive much of their power from

their simplicity: they represent complex developmental dynamics

with small numbers of genotype-specific parameters. However,

genetic technologies are identifying large numbers of genes involved

in environmental responses across model and non-model species. As

the number of candidate loci grows, linking allelic variation across

loci to genotype-specific parameters (e.g., [72–74]) becomes more

difficult. Gene network models describe how genes interact in

pathways to transmit genetic signals and drive development. This

information can be used to refine genetic parameters for develop-

mental threshold models.

A gene network that controls vernalization requirements for

flowering

As an example, many genes are known to play a role in the

response of Arabidopsis thaliana flowering to winter chilling, or

vernalization [75]. Wilczek et al. [26] modeled the effect of variation at

four vernalization-related genes – FLC, FRI, FVE, and VIN3 – based on

the topology of the underlying gene network (Figure IA) [32]. FLC is a

central hub of this network. High expression of FLC delays flowering

and winter chilling (vernalization) represses FLC expression and

activity. FLC is positivity regulated by the gene FRI, among others,

and repressed by genes of autonomous pathways including

FVE. Vernalization by several weeks of cold temperatures leads to

epigenetic silencing of FLC by a pathway involving the gene

VIN3. Gene network-guided parameterization of developmental

threshold models

Wilczek et al. [26] used a vernalization submodel with seven

parameters. They applied rules based on the gene network model

to determine specific parameter modifications for each allele of the

four genes (Figure IB). First, alleles of each gene directly affect only

one parameter in the model. Second, genes in the same linear

pathway have epistatic effects on pathway activity. Therefore, before

winter chilling, functional alleles at FRI and nonfunctional alleles at

FVE increase FLC activity when FLC is functional (manifested as slow-

filling cups for these genotypes, because high FLC expression

decreases progress toward flowering; see Box 3 for an explanation

of the cups). Nonfunctional alleles at VIN3 prevent repression of FLC

by winter vernalization only if FLC is functional and highly expressed

(manifested as a slow-filling cup for vin3 after winter but rapidly filling

cups for the other genotypes that have low FLC expression).Predic-

tions of genotype-specific flowering time

These two rules allow environment-dependent predictions of

flowering times of genotypes with any combination of functional

and nonfunctional alleles at these four genes (Figure IC).
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Figure I. Integrating genetic information into developmental threshold models.

(A) The genetic pathway of flowering-time regulation in Arabidopsis thaliana. (B)

Gene expression of FLC in different seasons (lower), as a function of the level of

sensitivity of different genotypes (indicated by color) to the environmental signal

of cold vernalization. Schematic in upper panel depicts genes with different

environmental sensitivities. See Box 3 for more details on this schematic. (C) The

probability of flowering in different seasons for different genotypes, as

determined by the level of seasonal FLC expression of each genotype

(depicted in B).
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events within populations of cells. Developmental events
in single cells can be triggered stochastically within a
population of cells in response to internal or external
factors and, in aggregate, eventually produce enough total
signal to trigger an organ-level developmental event [47],
as has been described for the gradual lifting of repression of
flowering by vernalization in A. thaliana [61,62]. Whether
this molecular mechanism applies to other developmental
state changes is unknown [63], but mounting evidence
suggests that epigenetic mechanisms such as those just
discussed are important for triggering and maintaining
many developmental transitions in plants [64] and these
can function essentially as quantal phenomena at the
genetic level.
When developmental threshold models of developmen-
tal transitions are linked across the life cycle, important
consequences of pleiotropy can be investigated. Single
genes can regulate multiple developmental transitions
in response to environmental conditions. For example,
several genes in flowering-time pathways have also been
implicated in the regulation of germination (e.g., [65–68]).
Models that compare similar versus independent environ-
mental regulation of different life stages can evaluate
potential outcomes of such genetic pleiotropy.

In addition, such models can investigate environmen-
tally induced pleiotropy: a gene that alters the timing of
one developmental transition also alters the seasonal en-
vironment next experienced (a form of habitat selection),
9
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which influences the phenotypic expression of traits that
exhibit plasticity to that environment. For example, a
study of the seed dormancy gene DELAY OF GERMINA-
TION-1 (DOG1) in A. thaliana showed that DOG1 influ-
enced not only germination timing but also flowering
phenology, and that it did so through its effects on germi-
nation [69]. DOG1 altered not only phenotypic expression
of post-germination traits but also the expression of allelic
differences in other genes. Such dynamics thereby can
influence fundamental patterns of genetic correlations
among traits. Developmental threshold models support
such empirical studies and have shown that variation in
parameters regulating prior developmental transitions,
such as dormancy, influence later life stages, such as
flowering and generation time [24] (Figure 1). These mod-
els can therefore make predictions about phenotypic and
genetic correlations under diverse environments.

Concluding remarks: integration across the life cycle
while incorporating fitness, variance, and genetics
To our knowledge, no process-based model has incorporat-
ed all of the components discussed above, but such inte-
gration is possible and would be a powerful approach for
studying ecological and evolutionary outcomes in variable
or changing environments (Box 5).

Models that have combined linked life stages, a popula-
tion-level approach to incorporate variance, and genetic
information have been able to evaluate how allelic changes
in genes regulating specific life stages influence phenotypic
expression across the life cycle and how the geographical
distribution of alleles influences the geographical distribu-
tion of life histories. In the case of A. thaliana (Figure 1),
Box 5. Future goals

Characterize the sources and consequences of within-population

variation in developmental events

This requires studying developmental processes of individuals

that comprise populations and assessing the contributions of

environmental variance, stochasticity of gene expression, and

genetic variance. Doing so could permit analysis of environment-

dependent genetic variation and heritability, which is necessary for

predicting responses to selection.

Incorporate environment-dependent fitness into genetically in-

formed models that link life stages within and across generations

This would enable predictions of genotype-specific ranges in

present and future climatic scenarios. It also has the potential to

enable estimates of relative fitness of different genotypes in

different locations and thereby generate evolutionary hypotheses

concerning local adaptation.

Integrate the fitness outputs of developmental threshold models

with demographic models

This would allow explorations of the effects of stochasticity,

dispersal, and density dependence.

Conduct sensitivity analyses of fully integrated models

This could identify key physiological processes and environmen-

tal factors that limit species distributions.

Integrate molecular-genetic information, including genetic path-

way structure, into developmental threshold models

This has the potential to identify key genes and alleles that

contribute to local adaptation and limit geographic distributions.

Apply developmental threshold models to molecular-genetic

processes

Evaluating how apparently quantitative or continuous traits can

result from state shifts of quantal traits among populations of cells

could clarify the mechanistic basis of developmental thresholds.
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seed dormancy influenced generation time expressed
across the native range and the known geographical cline
in the distribution of dormancy alleles was predicted to
canalize an annual life cycle across the range of this
species.

Models that have linked life stages within a generation
and incorporated fitness have predicted species distribu-
tions in the past, present, and future (Box 2). They have
also identified key developmental processes and environ-
mental factors that limit species distributions and those
that are likely to do so under scenarios of future climate
change.

The developmental models that integrate life stages
across generations (Figure 1) so far have not incorporat-
ed fitness. The models integrating phenology, fitness,
and species distributions (Box 2) have not linked life
stages across generations nor incorporated specific ge-
netic information concerning the regulation of specific
pathways. Neither has fully incorporated intrapopula-
tion variation throughout the life cycle. Incorporating
fitness into genetically informed models that link life
stages within and across generations would allow pre-
dictions of genotype-specific ranges in present and future
climatic scenarios and would allow estimates of the
relative fitness of specific alleles. Sensitivity analyses
of these models have the potential to identify specific
genes and alleles that most strongly affect population
performance and range limits under different climatic
scenarios. Combining the fitness outputs of developmen-
tal threshold models with explicitly demographic models
would allow predictions of genotypic growth rates and
facilitate the analysis of effects of stochasticity, dispers-
al, and density-dependence that are already incorporat-
ed into demographic models. With such a synthesis,
there is the potential to predict evolutionary responses
to selection of specific developmental processes and the
genetic pathways that regulate them. Incorporation of
such genetic specificity into projections of the effects of
climate change could enhance management decisions for
both wild and cultivated systems.
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