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The founding population in most new species introductions, or at the
leading edge of an ongoing invasion, is likely to be small. Severe
Allee effects—reductions in individual fitness at low population den-
sity—may then result in a failure of the species to colonize, even if
the habitat could support a much larger population. Using a simula-
tion model for plant populations that incorporates demography, mat-
ing systems, quantitative genetics, and pollinators, we show that
Allee effects can potentially be overcome by transient hybridization
with a resident species or an earlier colonizer. This mechanism does
not require the invocation of adaptive changes usually attributed to
invasions following hybridization. We verify our result in a case study
of sequential invasions by two plant species where the outcrosser
Cakile maritima has replaced an earlier, inbreeding, colonizer Cakile
edentula (Brassicaceae). Observed historical rates of replacement
are consistent with model predictions from hybrid-alleviated Allee
effects in outcrossers, although other causes cannot be ruled out.
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Colonizing species rarely encounter empty environments and
may, as a result, come into contact with close relatives. The

most intensively discussed case of related colonizer–resident
interactions, although by no means the only example, is the entry
of modern humans into regions occupied by Neanderthals (1),
eventually replacing them. Colonizing and resident species can
interact in various ways, with consequences for their population
dynamics. Competition, for example, is likely to impede successful
establishment and population growth of newcomers; in contrast,
resident species may facilitate new colonizers through hybridiza-
tion or by shared interactions with organisms from other trophic
levels. Although some interactions have been identified and are
widely considered to predominate, there may be other interactions
whose significance is yet to be explored. These interactions may be
important in some or many cases, and a better knowledge of them
might alter our interpretations of empirical observations. Here, we
will investigate one such potential interaction, arising from hy-
bridization between plant species sharing animal pollinators.
Hybridization can introduce adaptive alleles that contribute to

expansion into new habitats (2, 3) and may result in new taxa. Local
adaptation, resulting from changes in fitness, is the only positive role
for species hybridization considered in the invasion literature; the
same is true for admixtures of species genotypes from multiple
sources. However, is it possible that there could be other benefits
from hybridization, purely demographic ones? Furthermore, are
these additional benefits capable of altering invasion dynamics over
similar timescales and magnitudes? If so, such interactions would
need to be excluded before adaptation can merely be assumed.
Many colonizing populations are susceptible to the demographic

challenge of Allee dynamics, either because the initial founding
population is small (4, 5) or because rare, long distance dispersers,
beyond the present range, will initiate low-density satellite pop-
ulations (6). Allee effects could slow range expansion or even halt
it completely (7). In plants, a small founding population can ex-
perience Allee effects because of a scarcity of compatible mates,

low pollinator visitation, or both (8, 9); the term “pollen limitation”
is often used as a generic term when the exact mechanism is un-
clear. In the extreme case of a single arriving adult, population
persistence would normally be impossible unless the species is ca-
pable of asexual reproduction or self-fertilization [“Baker’s Law”
(10)]. Here, we propose a positive role for hybridization in species
invasions and range expansion, a purely demographic mechanism
without the requirement for any new adaptation to result.
If a mate-limited colonizing species is capable of hybridizing

with a species already present, the colonizing species could
overcome the otherwise insurmountable limitations imposed by
Allee effects. Early-generation interspecific crosses (i.e., hybrids)
could enable the colonizer genes to establish. Pure colonizer-
type individuals can subsequently arise through crossing among
hybrid lineages (11) or repeated backcrossing with the colonizer
parents. We further hypothesize that this hybridization-rescue
effect is more likely to eventuate if the new species and hybrids
are more attractive to pollinators or when the hybrids are more
compatible (i.e., more likely to produce viable offspring) with the
newcomer than with the established species. That is, after suf-
ficient generations of asymmetric breeding (backcrossing to the
new colonizer), plants will increasingly come to resemble the
original newcomers. The arriving species will essentially have been
reconstituted, at least in its nuclear genome, and its population
can increase now that it has escaped the critical effects of Allee
dynamics. In effect, resident populations of a cross-compatible
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species, which may otherwise negatively affect the newly coloniz-
ing species through competition, become stepping stones through
the landscape for a self-incompatible species via hybridization.
We develop a model that confirms that transient hybridization

can overcome Allee effects under a wide range of ecological
settings in relation to breeding system, pollinator behavior, and
life history traits. Moreover, we show in a case study using a
simplified version of the model that the parameter values re-
quired for the demographic mechanism to be as effective as
genetic changes in fitness are fulfilled by the sequential invaders
Cakile edentula and Cakile maritima. Our hypothesis therefore
provides a possible explanation for the rapid replacement of
C. edentula over a large part of its invasive range by C. maritima
in the west of North America, New Zealand, and Australia (12–15).

Results
Our hypothesis is clearly supported by the model results. In the
absence of hybridization, when we introduce a small number of

seeds, the incoming species population declines rapidly to ex-
tinction (Fig. 1A). The same propagule pressure but with hy-
bridization transforms the population from one dominated by
resident species and resident-like genotypes (blue in Fig. 1B) to
one dominated by colonizer and colonizer-like genotypes (red in
Fig. 1B). Over time, the colonizer genotype is reconstituted and
the resident species is eventually replaced by the new colonizer.
Allee population thresholds are always smaller with hybridiza-
tion than without it, proving that introgression is asymmetric in
favor of the colonizer [i.e., when W0 > 1 (Fig. 2A) or β> 1 (Fig.
2B)]. Even with no bias in pollinator behavior (W0 = 1) or com-
patibility (β= 1), hybridization still reduces the Allee threshold
slightly (Fig. 2) because some of the otherwise wasted pollen
results in seed production via the resident species, thus con-
tributing positively to the dynamics of colonizer genes.
Consistent with the established theory that selfing provides

reproductive assurance (16), the Allee threshold for establish-
ment of colonizing species decreases with its selfing rate for both
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Fig. 2. The critical number of propagules for the establishment of a colonizing species, the predicted Allee threshold, as a function of either pollinator
behavior (assuming equal compatibility, β = 1) (A) or reproductive compatibility of hybrids with the parental genotypes (assuming equal pollinator pref-
erence, W0 = 1) (B). Note that B would also indicate the results expected from passive pollination, such as by wind. Compatibility, β, has no effect on the
dynamics of either species when they do not hybridize: the Allee threshold is therefore constant for the no-hybridization scenario (solid line in B). When W0 = 1
and β = 1, backcrossing is symmetric, but when β is larger than 1, F1 and later generation hybrids are more compatible with the colonizing-type individuals. In our
simulations, the criterion for the Allee threshold was that the population size (seed number) after 100 generations was the same as the initial population size. See
Tables S1 and S2 for lists of parameters and their values.
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Fig. 1. Dynamics predicted by the generic model when a small number of a colonizing species arrives at a new location currently occupied by a resident
species: no hybridization (A) and hybridization (B). Although in both A and B, pollinator preference parameter W is set to favor more backcrossing to the
incoming genotype than to the resident species, the incoming genotype fails to establish when it does not hybridize with the resident species (A). However,
when there is hybridization (B), the population steadily accumulates a higher proportion of individuals similar to the colonizer, whereas the resident genotypes
decline in abundance and are finally replaced by the colonizer. Dark red indicates individuals whose genome is indistinguishable from the colonizer, dark blue
indicates genomes indistinguishable from the resident species, and gray represents hybrid genotypes comprising 50% of each parental species’ genome. See
Tables S1 and S2 for lists of parameters and their values.
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hybridization and no-hybridization scenarios. However, Allee
thresholds were always smaller for a hybridizing colonizer than the
nonhybridizing one over a wider range of simulated breeding sys-
tems of both species (Fig. 3). Because the resident species adopts a
more autogamous breeding system, Allee thresholds become larger
in the colonizing species, but with hybridization, the incoming
species could still invade the resident population (Fig. 3).
To test our predictions in a contemporary invasion, we pa-

rameterized a simplified version of our model with a single hybrid
category (F1 hybrids), using empirical data from Cakile maritima
[self-compatible (SC) (17)] and C. edentula [self-incompatible
(SI) (17, 18)]. Why and how the established invader (C. edentula)
has been replaced by a newly arrived species (C. maritima) in
three parts of the world has remained a mystery over the 40 y
since the replacement was first reported (13). Could hybridization
with the prior SC invading plant have increased the probability of
subsequent establishment of an SI species? Hybrids between the
two species can be produced easily by hand (17). We have also
confirmed, using genetic markers, that individuals with in-
termediate morphology near the leading edge of the C. maritima
invasion in Tasmania are the results of hybridization (19).
We simulated the dynamics of C. maritima with and without

hybridization with C. edentula. The results indicate that hybrid-
ization could facilitate the establishment of a small (otherwise

sub-Allee threshold) population of the primarily self-incompatible
C. maritima (Fig. 4), with a strong correspondence between the
timescales for species replacement predicted by the model simu-
lation (Fig. 4A) and the frequency of C. maritima relative to
C. edentula in herbarium specimens (Fig. 4B) (20). Without hy-
bridization, small initial populations of C. maritima were predicted
to fail to establish (Fig. 4C). A note of caution is required for this
comparison: our model simulates the population dynamics within
a single location (with no account of subsequent spread), whereas
herbarium data give a (very crude) representation of invasion
dynamics over a wider geographic scale (21). Our simulation re-
sults are, however, also in good agreement with the replacement
time-scale observed on Lord Howe Island, where C. maritima
replaced C. edentula in perhaps 20–30 y (14).
Our simulation model and the Cakile system provide support

for our hypothesis of an overlooked, purely demographic, role
for hybridization in both establishment and spread. A robust test
of the hypothesis would require deliberate introductions into
regions lacking one or other species, which would probably be
unethical or unwise. However, in the case of SI and SC Cakile
species in Australia, there is now clear evidence that interspecific
hybridization has occurred during the establishment and expan-
sion of C. maritima (19). Genetic and morphological evidence
across the current C. maritima invasion wave-front in Tasmania
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(19) match what would be expected if species replacement by this
mechanism had occurred. Specifically, in places where C. edentula
has a very high relative frequency, hybrids are common and even
plants that are morphologically indistinguishable from one parent
often have the chloroplast genotypes of the other (19). In regions
where C. edentula has long since disappeared and there is now
little evidence of nuclear introgression, C. edentula chloroplasts
may still be common in C. maritima, indicating extensive past
hybridization and reconstitution of parental phenotypes. Although
our artificial intercrossing provided no evidence for bias in cross-
compatibility of hybrids with the two parental species (Fig. S3),
pollinators clearly preferred to visit C. maritima-like individuals
over C. edentula when both were present (SI Text, Simplified Model
for C. maritima and C. edentula, Sources of data for parameteri-
zation). We note that introgression has been proposed before for
these species (22) but based on less convincing data and without
any mechanism being proposed (19).
If this demographic phenomenon does occur in nature, is it

idiosyncratic—a unique combination of species sharing pollina-
tors and invading the same habitat in the same sequence—and of
little relevance to ecology and evolution in general, or is it more
common? We believe that the latter may be true. First, both
hybridization (3) and Allee effects are common in biological
invasions (7). Evidence is mounting for the importance of hy-
bridization as one of the processes driving invasions, although so
far, the explanations have relied solely upon genetic conse-
quences of hybridization endowing adaptive benefits (refs. 2 and
3 but see ref. 11). Indeed, the risks of extinction and genetic
swamping of native species have been raised as dire conse-
quences of hybridization (2). Allee effects or, more specifically,
pollen-limited seed production, are expected to be common,
because more than 80% of plants rely on pollen transfer for
reproduction (23) and ∼50% of plant species are obligate out-
crossers (24). Pollen limitation, resulting from low availability of
both compatible mates and pollinators, seems to be more com-
mon in introduced species than their native counterparts (25,
26). First, our model shows that the presence of another species
can alleviate such pollen limitation and reduce Allee effects
through hybridization with related species. Second, our model
shows that the rescue effect of hybridization will be stronger
when there is an asymmetry in the direction of introgression
(backcrossing): this phenomenon seems to be common in both
natural and artificial hybridizations. Pollinators rarely commit to
random foraging bouts but rather discriminate among plant types
(27); such behavior can result in assortative mating and produce
the required asymmetry. Intercrossing success (i.e., the pro-
duction of viable seeds) is also known to be affected by the
direction of crossing (28, 29). The interplay between these pre-
and/or postzygotic processes can result in unequal transfer of
parental genetic material into the genome of hybrid progeny (28,
29). Whereas the short-term demographic consequence of this
asymmetry is facilitation of establishment, the long-term out-
come can be species replacement as we see in Cakile species.

Materials and Methods
Wedeveloped a density-dependent, time-discrete, deterministicmodel based
on the life cycle of an annual plant with no persistent seedbank and occurring
in a small, isolated patch of suitable habitat. The model incorporates de-
mography, mating systems, pollinators, and quantitative genetics through
the following recurrence difference equation:

Nxðt+1Þ =
X
y

MyθyFy ðMÞ
"
syHðx : y, yÞ−

�
1− sy

�X
z

Cðy, zÞVyϕðMÞHðx : y, zÞ
#
,

where Nxðt+1Þ is the number of seeds from genotype x in generation t + 1,
and My =NyðtÞSyðNÞ denotes the total number of female adults with geno-
type y, surviving from N=

P
kNkðtÞ total seeds according to a Beverton–Holt

type recruitment function, SðNÞ (Eq. S1). θy is the per capita ovule production
of female genotype y in the absence of neighboring plants, which decreases

with total adult population size ðM=
P

kMkðtÞÞ according to a rectangular
hyperbolic function FyðMÞ (Eq. S3) because of resource competition and
other negative interactions between plants. A fraction sy of flowers pro-
duces seeds through selfing, whereas the 1− sy nonselfed proportion relies
on pollinators for seed production. Not all pollen from other genotypes
will result in viable offspring; hence the compatibility of genotype y with
genotype z is given by Cðy, zÞ (Fig. S2). The relative frequency of genotype y,
adjusted for pollinator preference (Fig. S3), is Vy, whereas the probability of
pollination is related to the total adult population size following a Holling
type III functional response, ϕðMÞ (30).

We used the number of chromosomes as a proxy for determining the total
number of genotype classes (which is 2n+ 1) and the chromosome combi-
nation of the two parental species to characterize x (Fig. S4). That is, a pure
individual of the incoming species, denoted by x = 0, has no alien chromo-
some from the resident species whereas the karyotype of an F1 hybrid
embodies an equal number of chromosomes from the two parental species,
so it is shown as x = 0.5. The proportion of ancestry from the incoming
species decreases as x approaches 1, whereas that of the resident species
increases, with x = 1 indicating a pure individual of the resident species with
no alien chromosome from the incoming species. A diploid individual then
undergoes gametogenesis following the principle of independent assort-
ment of chromosomes, assuming no crossing over, where a haploid gamete
randomly receives a mixture of chromosomes from the two parental species.
By taking the convolution over the gamete types that can be produced by
two crossing diploid individuals, we obtained the probability Hðx : y, zÞ of
two parents with genotype y and z producing an offspring with genotype x.
In essence, our quantitative genetic model is similar to the hypergeometric
phenotypic model used previously to study sympatric speciation (31, 32) and
risk of extinction by hybridization (33). We mapped genotypic class x to a
phenotypic character using a Gaussian model (30) (Fig. S5). We simulated the
population dynamics of 19 genotypic classes corresponding to a diploid
species with 2n= 18 over 100 generations. This value was chosen to corre-
spond to Cakile spp. (2n = 18) which we consider later. A smaller or larger
number of chromosomes will respectively either increase or decrease the
speed at which species replacement will occur but without altering the
qualitative dynamics. Full details of the model and simulations are provided
in SI Text, Generic Model to Simulate the Dynamics of Hybridizing Annual
Species, Generic model formulation and SI Appendix.

We compared the population dynamics of the newcomer under two
scenarios: (i) hybridization with an established species; and (ii) an estab-
lished relative present but no hybridization. Fecundity and survival param-
eters were chosen to be constant and equal for the two species and for all
hybrids to ensure no fitness advantage or disadvantage from hybridization.
These assumptions can be altered according to the question being in-
vestigated. As a measure of establishment success, we estimated “Allee
thresholds” as the minimum number of colonizing individuals required to
ensure positive population growth for each scenario. A facilitation effect for
hybridization would be apparent as a smaller Allee threshold than that
observed for the no-hybridization scenario. We investigated the sensitivity
of the model predictions over a wide range of parameter values related to
initial population size, mating systems of the interacting genotypes, inter-
crossability, pollinator behavior, and pollination-plant density relationship
(Table S2).

To verify the findings of the above theoretical model, a reduced version
including only three genotypes, the two parental species, and a single hybrid
class (34), was parameterized using empirical data from Cakile maritima and
C. edentula (see Fig. S6 for example simulation). Parameter values related to
fecundity were obtained from a common garden experiment. The selfing
rates and cross-compatibility of the genotypes were quantified in two arti-
ficial crossing experiments (Fig. S1). Pollinator visitation rates were obtained
by monitoring a population where the two species had similar relative fre-
quencies. For hybrids, we used the average phenotypic values of the two
parental species when no data existed. For all other parameters, we used
published data and if no data were available, we ran the model over a wide
range of parameter values to ensure consistent outcomes (e.g., Fig. S7). See
SI Text, Simplified Model for C. maritima and C. edentula for detailed de-
scriptions of the estimation of parameters.
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SI Text
Generic Model to Simulate the Dynamics of Hybridizing Annual
Species.
Generic model formulation. We first construct a deterministic pop-
ulation model for a single annual species, of a single genotype,
and then show how it can be extended to two species, to include
more cooccurring genotypes that arise because of hybridization
and later-generation backcrossing. Throughout we use pop-
ulation density and population size (or number) interchangeably,
assuming that for a fixed area, changes in density are equal to
changes in number.
Single species. Suppose that a population consists of N diploid
seeds at time t, NðtÞ. Seeds germinate and are recruited into the
population as seedlings and assumed to be spread evenly within
the receiving patch of habitat. The proportion surviving to ma-
turity is a function of both density-dependent and density-
independent factors, collectively represented by SðNÞ. Each
surviving plant has the potential to produce θ ovules in the ab-
sence of competition from other plants, but its per capita ovule
production decreases with population density, following a neg-
ative density-dependent function FðMÞ, where M indicates
number of adult plants: M =NSðNÞ. Each plant can self-fertilize
a fraction s of its ovules, whereas the remaining (1 − s) fraction is
available for outcrossing. Because of pollinator or mate limita-
tions, however, not all 1 − s will be outcrossed and some will be
aborted. We assume that the probability of successful pollination
is positively related to the population density (i.e., there is an
Allee effect) following ϕðMÞ. A positive correlation between
population density and pollinator visitation rate has been ob-
served in many studies and has been implemented in population
dynamics models (35). The difference equation with both neg-
ative (ovule production and survival) and positive (pollination
success) density regulation for a single species’ population dy-
namics is therefore given by

Nðt+ 1Þ=MðNðtÞÞθFðMðNðtÞÞÞ½s+ ð1− sÞϕðMðNðtÞÞÞ�. [S1]

For density-dependent and density-independent recruitment of
seeds into the population, we use a Beverton–Holt type model:

SðNÞ= L
1+ bN

, [S2]

where L denotes the proportion of seeds recruited independent
of population density, whereas b is the rate of decrease in survi-
vorship of a plant as density increases. We used a rectangular
hyperbola to describe ovule reduction as related to density of
mature plants, M:

FðMÞ= θ

�
1−

dM
1+ dM

�
, [S3]

where d is a coefficient: the larger the value of d, the stronger
the negative effect of density on reproduction. Given that M =
NS(N), Eq. S3 can be written as a function of N:

FðMðNÞÞ= θ

"
1−

LdN
1+ bN

1+ LdN
1+ bN

#
, [S4]

which can be simplified to

FðMðNÞÞ= θðbN + 1Þ
Nðb+LdÞ+ 1

. [S5]

For pollination probability, or “pollinator foraging choice” (30),
we used Holling type III functional response to relate the prob-
ability of pollination to population size:

ϕðMÞ= ðρMÞγ
1+ ðρMÞγ , [S6]

and, again,

ϕðMðNÞÞ=

h
ρNL
1+ bN

iγ
1+
h

ρNL
1+ bN

iγ . [S7]

This type of functional response is expected for generalists that
frequently switch between flower types (35) or if pollinators en-
gage in an area-restricted search strategy (36). The reciprocal of ρ
gives the population size at which 50% of plants will be visited
(and pollinated) by pollinators. The parameter γ determines the
shape of the curve: when γ is large, there is little change in
probability of pollination at low densities compared with a small
γ, which gives a higher pollination rate at the same low densities.
When γ = 1, the model reduces to a type II or saturating func-
tional response. Eq. S7 can be simplified to ϕðMðNÞÞ=
1− 1

1+
�
ρNL=ð1+ bNÞ

�γ, and Eq. S1 becomes

Nðt+ 1Þ=
�

NðtÞL
1+ bNðtÞ

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
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�
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. [S8]

This model results in component Allee dynamics (37) by nega-
tively relating recruitment and per capita fecundity to population
density, while positively scaling pollination probability.
Two species. Now suppose that an equally competitive congeneric
species already occurs in the habitat (we will call this a resident,
which could be either a native or a previously established invader)
and can interact with the above species in both positive and
negative ways. The assumption is made that both species are
homogenously distributed across space. A negative interaction
occurs because of competition between the two species for limited
abiotic resources and is reflected in their reproduction, FðMðNÞÞ,
and survival, SðNÞ, functions. The intensity of competition, em-
bedded within FðMðNÞÞ and SðNÞ, is assumed to depend on the
total number of both species regardless of the species identity.
This equality in competitiveness of species is required to ensure
that any difference between hybridization and nonhybridization
scenarios is solely attributable to hybridization and not to an a
priori fitness differential. However, the model can accommodate
species inequality in any traits, as shown in Eq. S16. A positive
interaction can occur when there is a positive relationship
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between the chance of pollination and the total population size,
such that M on the right hand side of Eq. S6 is replaced by the
combined number of individuals from the two species. However,
the two species may also compete for pollinators and, depending
on their relative attractiveness to pollinators, may experience
differential outcrossing success, accounted for by the Vx function
(see below). Using subscript x, where x = 0 denotes the invader
and x = 1 indicates the resident species, the difference equation
for two interacting species is given by

Nxðt+ 1Þ=MxðN ðtÞÞFx

	X1

k=0
MkðNðtÞÞ



3
h
sx − ð1− sxÞVxðN ðtÞÞϕ

	X1

k=0
MkðN ðtÞÞ


i
,

[S9]

where N is the total density summed across all genotypes;
MxðNÞ=NxSð

P1
k=0 NkÞ with k = 0 (invader) and k = 1 (resident).

VxðNÞ is the proportion of pollinator visits to species x. If both
species are equally preferred by pollinators (i.e., visited ran-
domly) then the likelihood of a visit to any given species is pro-
portional to its frequency in the population, i.e., VxðNÞ=
MxðNÞ=P1

k=0 MkðNÞ=Rx, where Rx is the relative frequency
of adult plants. However, the two species may differ in their
attractiveness such that pollinators visit W plants of the invasive
species for every one plant of the resident species. Then the pro-
portion of visits to the invasive species is

Vo =
WR0

WR0 +R1
, [S10]

and to the resident is

V1 =
R1

WR0 +R1
= 1−Vo, [S11]

where R0 and R1 are the relative frequencies of invader and
resident plants in the mixed population (R0 +R1 = 1Þ, whereas
Vo and V1 are adjusted frequencies after accounting for the bias
in pollinator preference (see Fig. S1 for a graphical explanation
of the pollination submodel). When the two species hybridize
and produce viable offspring, the population will consist of three
genotypes in the next generation: two parental pure species plus
the F1 hybrid, so x= f0,0.5, 1g. We use x= 0.5 to indicate that the
hybrid genotype is intermediate relative to its parents. In the
later generations, more intermediate genotypes will be produced
through backcrossing and segregation (accounted for in Eq.
S12), so x can then take any values between 0 and 1. However,
as a workable assumption, we consider variable x as a discrete
variable with G genotypic classes. We use the number of chro-
mosomes as a proxy for determining G (the total number of
genotype classes) and the chromosome combination of the two
parental species to characterize x. That is, suppose that species A
(e.g., invasive) and B (resident) both have 2n = 18 chromosomes
and can freely cross with each other. Individuals from this mixed
population can then be categorized in 19 genotype classes
ðG= 2n+ 1Þ based on the number of chromosomes that they
receive from the two species [i.e., (18,0), (17,1),. . . (1,17),
(0,18)]. The first element in (•,•) indicates the number of chro-
mosomes from species A, An, whereas the second element is the
number of chromosomes from species B, Bn. An individual with
an (18,0) chromosome combination is regarded as a pure indi-
vidual of species A, whereas (0,18) denotes a pure individual of
species B. We map chromosome combinations to variable x using
x=An=2n, which gives x = 1 for species A and x = 0 for species B
(the use of An in the numerator is arbitrary). In this paper, we
assign x = 0 to the incoming species and x = 1 to the resident

species. Crossing-over can result in more intermediate geno-
types, where a single chromosome can comprise various propor-
tions of the genome from the two species, but for simplicity, we
do not consider this possibility in our model. It should not affect
our qualitative conclusions.
A diploid genotype with a total of ℓ alien chromosomes (ℓ≤ n

and ℓ≠ 0) undergoing gametogenesis can produce ℓ+ 1 haploid
gametes (an F1 hybrid which has n alien chromosomes can
produce the maximum number of gamete types, which is n + 1).
A gamete can possess ν alien chromosomes where ν range from
0 up to ℓ (i.e., ν∈ f0, . . . , ℓg) with probability given by

PðνjℓÞ=

�
n
ν

��
n

ℓ− ν

�
Pi=ℓ

i=0

�
n
i

��
n

ℓ− i

�. [S12]

This formula is based on the number of ways that chromosomes
can line up at the cell equator during the metaphase of the first
meiotic division. As shown in Fig. S2, with ℓ= 4, various arrange-
ments are possible: (i) all alien chromosomes (red) can occur on
the same strand, (ii) one alien chromosome on the left strand
and three on the right, and (iii) two alien chromosomes on either
side. Within each of these arrangements, many different combi-
nations (i.e., positioning of aliens along the native strand) can
take place. Indeed,

	 n
ν



in the numerator of Eq. S12 gives the

number of possible ways that ν alien chromosomes (out of ℓ) can
be positioned on the left strand, whereas

	 n
ℓ− ν



gives the num-

ber of positions for the remaining alien chromosomes (i.e., ℓ− ν)
on the right strand. Note that when the number of alien chro-
mosomes on the left and right strands are the same (i.e.,
ν= ℓ− ν), the number of combinations for that gamete type dou-
bles. The denominator in Eq. S12 simply gives the total number
of all possible combinations.
Now, suppose that a female genotype y with ℓy alien chromo-

somes is crossed with a male genotype z with ℓz alien chromo-
somes. We obtained the probability of producing offspring x
(with ∀ℓx ∈ f0, . . . ,Lg, where L= ℓz + ℓy) from parents with geno-
types y and z using a discrete convolution:

Hðx : y, zÞ=
X
h

yhzx−h+1. [S13]

In this formula, y=PðνjℓyÞ and z=PðνjℓzÞ are two vectors con-
taining the probabilities for gamete types that can be pro-
duced by parents y and z, respectively, following Eq. S12, and
h ranges over all legal subscripts for yh and zx−h+1, specifically,
h= ½maxð1, x+ 1−LÞ, . . . , minðx,LÞ�. Note that we transform ℓx to
x using x= 1− ℓx=2n, which represents the proportion of alien chro-
mosomes within the genome ranging from 0 (pure invasive species)
to 1 (pure resident species). Our genetic model gives rise to similar
qualitative outcomes as the hypergeometric phenotypic model (31,
32). The difference equation model that allows for hybridization
then takes the form:

Nxðt+ 1Þ=
XG
y=1

MyðN ðtÞÞθyFy

 XG
k=1

MkðN ðtÞÞ
!"

syHðx : y, yÞ

−
�
1− sy

�
Cðy, zÞVyϕ

 XG
k=1

MkðN ðtÞÞ
!
Hðx : y, zÞ

#
,

[S14]

where G= 2n+ 1 indicates the total number of genotypes in
the population. The function Cðy, zÞ in Eq. S14 indicates the
compatibility (i.e., the likelihood of producing viable offspring
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once pollinated) of female genotype y with the male genotype z
and is calculated using

Cðy, zÞ= 1− ðα− 1Þ�yβ − 2yβzβ + zβ
�
, [S15]

where parameter α indicates the compatibility between the two
parental species, whereas β introduces asymmetry in the direc-
tion of backcrossing (asymmetric compatibility). The model (Eq.
S15) assumes that the compatibility between two genotypes in-
creases as these two genotypes come to share more genome from
the same species. For the specific cases of y= z= 0 (cross between
two pure individuals of the incoming species) and y= z= 1 (cross
between two pure individuals of the established species), the
model gives Cðy, zÞ= 1 but Cðy, zÞ≠ 1 if y= z≠ 0  or  y= z≠ 1. Note
that Cðy, zÞ= 1 always holds if β= 0 or α= 1. When β> 1, F1 and
later generation hybrids are more compatible with the incoming-
type individuals, whereas for β< 1 compatibility is biased toward
the resident species and for β= 1 introgression is symmetric (Fig.
S3). Studies with both natural and artificial crossing have shown
that the intercrossing success rate can be affected by the direction
of crossing (38), and our model accounts for such an asymmetry by
incorporating the bias parameter β.
To relate genotype x to a phenotypic character T (any model pa-

rameter), we assumed that trait values (e.g., selfing rate) are normally
distributed among genotypes, following Hall et al. (39) with minor
modifications:

TðxÞ=Tmax exp

 
−
ðx− xmaxÞ2

2σ2

!
, [S16]

where Tmax is the maximum value of a given trait, whereas xmax is
the genotype which acquires that maximum trait value. The pa-
rameter σ2 represents the variance, which can be solved to give
the minimum value of T for a specific genotype. For example, we
may choose to assign the highest selfing rate to genotype x= 0
(newcomer species) and then calculate σ2 such that the genotype
x= 1 (resident species) obtains the lowest selfing rate among all
genotypes (Fig. S4).
A list of model parameters is given in Table S1. To summarize,

some of the assumptions of our model are as follows:

i) There is no persistent seedbank.
ii) Both density-dependent and density-independent factors

act at the same time to determine the survival rate. For
example, if disturbance occurs first whereby many seedlings
die, then the density-dependent mortality would be minimal.

iii) Self-fertilization occurs first, and the remaining flowers then
out-cross.

iv) Pollination success is only determined by population size
and attractiveness of genotypes (the frequency of pollen
from any genotype in the pollen pool is proportional to
the relative abundance of adult plants of that genotype in
the mixed population and the per capita pollen production is
therefore the same for all genotypes).

v) There is no difference between chromosomes when map-
ping genotype to phenotype (i.e., it is the number of chro-
mosomes that matters, not their type)

vi) There is no crossing over.
vii) Self-fertilization incurs no inbreeding depression. Inbreed-

ing depression could easily be incorporated into the model
as another multiplier (for example, of selfing rate s) in Eq.
S1 and its multigenotype derivation (Eq. S14), but the re-
sults would not change qualitatively.

Simulations.We simulated the population dynamics of 19 genotypic
classes corresponding to a diploid species with 2n = 18 over 100
generations. All simulations were run using Matlab (version 2014a);

code is given in SI Appendix. Table S2 provides details of parameter
values (and range) used for various simulations related to the effect
of pollinator behavior, mating system, compatibility between
genotypes under hybridization, and no-hybridization scenarios.

Simplified Model for C. maritima and C. edentula.
Model assumptions. To test the hypothesis that hybridization could
have facilitated the invasion of C. maritima without enhancing
fitness, we used a reduced version of the generic model. This
simplified model simulates the invasion dynamics of only three
genotype classes (34): C. maritima, C. edentula, and their F1
hybrid. The variable x thus takes three values: 0 for C. maritima,
1 for C. edentula, and 0.5 for hybrids. The main reason for re-
ducing the number of genotypes is that there is no information
on the demography and biology of intermediate genotypes (later
generation hybrids). Furthermore, this simplification makes the
model more tractable without affecting the qualitative conclu-
sions. We used intercrossing compatibility rates obtained from
artificial hybridization experiments rather than using Eq. S15.
The model was parameterized using both the literature and our

own experimental or observational data; for a few parameters, for
which there were no estimates, we evaluated a range of plausible
parameter values to test whether their precise values affect the
qualitative results. If no parameter estimate was available for the
hybrid genotype, we used the average of the two parental species,
because hybrids tend to be intermediate in most characters rel-
ative to their parents (17). See Table S3 for a list of parameter
values and their sources: although some parameters are in favor
of C. maritima (e.g., higher fecundity and survival) compared
with C. edentula, this inherent fitness advantage alone is insuf-
ficient for C. maritima to drive a well-established C. edentula
population to extinction (Fig. 4).
Initial population sizes. Almost no data exist on the number of ar-
riving propagules in accidental introductions (4); clearly, the
number could be as few as one or it could be several orders of
magnitude greater, depending on the dispersal vector and chance.
We have no information on the founding population sizes
(number of seeds arrived) of C. maritima when the species was
first introduced to Australia, or even for its dispersal from one
beach to the next during subsequent spread. However, we know
that C. edentula had time to saturate most of its preferred hab-
itats by the time C. maritima arrived as the second invader. The
number of Cakile adult plants that can be found on a beach is
highly variable, so it is equally hard to say what a plausible
carrying capacity would be. Highly disturbed beaches may
function as sink populations and never support more than a few
individuals, whereas a sheltered beach may be a source pop-
ulation of many thousands of plants and a net exporter of seeds.
In our simulations, we fixed the carrying capacity of a beach at
500 adult plants (regardless of the species: this value is within the
range of our field observations for small beaches) and then in-
troduced 1–600 seeds of C. maritima (with unit increment).
We simulated the dynamics of the three genotypes over 40

generations. To estimate the Allee threshold for C. maritima, we
compared the number of C. maritima seeds after 40 generations
with the initial size of the founding population: the minimum initial
seed number that resulted in a positive population growth was taken
to be the Allee threshold. When C. edentula was present on the
beach, its population size was set at the carrying capacity (i.e., ∼500
individuals). However, we tested situations other than an equilib-
rium state, wherein C. edentula occurred with a lower number of
individuals as if its habitat had recently been disturbed (Fig. S5).
The results indicate that hybridization could facilitate the estab-
lishment of a small (otherwise sub-Allee threshold) population of
the primarily self-incompatible C. maritima (Fig. S5).
Sources of data for parameterization. The number of flowers (θ)
produced by each species and their hybrids was obtained from a
common garden experiment in pots containing a sandy soil.
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Plants were derived from seeds of C. maritima and C. edentula
and the progeny of putative hybrids (later confirmed as hybrids
by simple sequence repeat markers) collected from five, six, and
two locations, respectively, across their invaded ranges in Aus-
tralia. The number of flowers produced by each plant over its
lifetime was determined when plants were no longer flowering,
by counting the number of scars and pedicels left on the racemes.
Cakile maritima, C. edentula, and putative hybrids produced an
average of 1,195 (SE = 72; n = 54), 906 (SE = 59; n = 63), and
1,486 (SE = 128; n = 38) flowers, respectively. These numbers
are within the ranges estimated in beach populations in Tasmania.
Data on intercrossing compatibility were determined in two

glasshouse experiments, where we first produced F1 hybrids and
then established a series of reciprocal crosses between the F1
hybrids and their parental species. The probability of producing
viable offspring when crossed was calculated from the number of
viable (germinable) seeds divided by the total number of crosses
made between genotypes. Selfing rates were determined by ex-
cluding pollinators. No viable seeds were produced when
C. maritima was selfed by hand, although a very small number of
putative spontaneous selfs occurred on caged plants; it was
therefore not possible to measure inbreeding depression. Fig. S6
shows the average compatibility for the various conspecific
crossings implemented in these experiments; as can be seen,
backcrosses are almost equally compatible in either direction.
However, hybrids are more likely to backcross with C. maritima
than with C. edentula because they have larger flowers than
C. edentula: in our common garden experiment, mean petal di-
mensions (displayed section of petal only) were 5.42 × 2.01 mm
for putative hybrids, 6.19 × 2.45 mm for C. maritima, but only

4.35 × 1.19 mm for the inbreeder C. edentula, which, on some
occasions, may not even produce all four petals (17).
We monitored pollinator visits to 47 C. maritima and 37

C. edentula plants on a beach in Tasmania where both species
were approximately in equal abundance. C. maritima has a more
conspicuous display, with more open flowers per raceme and
larger flowers (see above). Both species were mainly visited by
honey bees (Apis mellifera); other common visitors were Euro-
pean bumblebees (Bombus terrestris) and cabbage white butter-
flies (Pieris brassicae). Although hybrids and their back-crosses
may have been present, we chose plants that had all of the
characteristics of their assumed parent species. We recorded
the time from the start of recording until the first visitor and the
number of flowers subsequently visited on that plant. We ana-
lyzed these time-to-event data with the Proc Reliability pro-
cedure of SAS to fit a lognormal distribution (version 9.3; SAS
Institute). The mean times to first visit were 110 s for C. maritima
and 830 s for C. edentula, implying that C. maritima was vis-
ited by pollinators 7.5 times as frequently as C. edentula. Polli-
nators also visited more flowers per visit on C. maritima than
C. edentula: using a Poisson distribution, the average number
of flowers visited per pollinator was 11.7 for C. maritima and
6.2 for C. edentula.
All details of experiments outlined above can be obtained from

R.D.C. For ρ and γ, parameters that describe the relationship
between population density and probability of pollinator visit, we
investigated the sensitivity of the model predictions over a wide
range of parameter values (Table S3), because we had no em-
pirical estimates for these two parameters. As shown in Fig. S7, a
model with hybridization always gave smaller Allee thresholds
over all tested ranges of these two parameters (Fig. S7).

H 

M E 80.3% (SE=1.1, n=1271) 

26.7% (SE=1.3, n=1238) 

13.2% (SE=0.5, n=4822) 

<1.0% (SE=0.3, n=877) 81.1% (SE=1.2, n=986) 

Fig. S1. Probability of successful crossing (i.e., viable seed production) for different directions of hand-crossing. The arrow shows the direction of pollen
transfer from a donor to a recipient plant: C. maritima (M), C. edentula (E), and F1 hybrids (H). Spontaneous self-fertilization rates are shown as dashed lines.
n indicates number of crosses.
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Fig. S2. Compatibility of F1 hybrid pollen (i.e., x = 0.5) with the ovules of various genotypes as predicted by Eq. S15 for three β values. When β is larger than 1
(here, β = 3; blue), the hybrid is more compatible (i.e., more likely to produce viable offspring) with the incoming genotype, whereas it has lower compatibility
with the resident genotype. When β is smaller than 1 (here, β = 0.2, red), the opposite is true, whereas for β = 1 (green), all genotypes exhibit the same level of
compatibility with the hybrid. In this example, the compatibility of the two pure parental genotypes, α, was set at 0.5.
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Fig. S3. Fraction of pollinator visits to a given species, as a function of its relative abundance and attractiveness (W) in a mixed population of two species
which share pollinator services. The likelihood of a visit to the mixed population is initially determined by the total size of the mixed population using Eq. S6,
whereas the proportion of visits (of the total probable visits) to a given species is then determined by the attractiveness of that species, using Eqs. S10 and S11.
For example, in A, because the total size of population was large (500 individuals), the likelihood of a visit was ∼1, whereas in B, with 50 plants, the maximum
likelihood of a visit was 0.5 (these probabilities were calculated using Eq. S6 with ρ= 1=50 and γ = 3.5). When both species are equally preferred by pollinators
(W0 =W1 = 1), the proportion of visits to any species is equal to their frequency (green line), whereas if the species is either more attractive or less attractive, the
visitation probability exhibits a convex (W = 4; red line) or concave (W = 0.25; blue line) relationship, respectively.
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No. alien 
chromosomes  

No. combina s  Probability  

0  15  15/720 = 0.0208  

1  120  120/720 = 0.1667  

2  2 ×  225  450/720 = 0.6250  

3  120  120/720 = 0.1667  

4  15  15/720 = 0.0208  

Sum  720  1.0  

Fig. S4. Some chromosome arrangements for a hypothetical diploid genotype with 2n = 12 where eight chromosomes descend from the resident species
(blue) and four (ℓ= 4) from the alien species (red). All alien chromosomes may be located on a single strand (A) or occur on the two strands (B and C). The

number of ways that alien chromosomes can be positioned within each strand is given by
�
n
ν

�
and

�
n

ℓ− ν

�
for left and right strands, respectively (Eq. S12), and

the total number of combinations is the product of these two values. For example, there are 15 different ways to position 4 alien chromosomes on the right
strand while having no alien chromosome on the left strand. This arrangement will result in two gamete types (one with no alien chromosomes and one with
four) with the equal probability of 0.0208. The inset table provides the probability values for each of the five gamete types (i.e., ν∈ f0, . . . , 4g) that can be
produced by a diploid genotype with n = 6 and ℓ= 4.
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Fig. S5. An example of mapping genotype x to a phenotypic character (e.g., selfing rate, s) using Eq. S16. xmax determines the location (i.e., genotype) at
which the maximum value of a trait, Tmax, occurs (here a selfing rate of 0.9).
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Fig. S6. Predicted Allee thresholds for the establishment of C. maritima. The critical number of arriving seeds, estimated for two invasion scenarios of
C. maritima at various initial plant densities of C. edentula (relative to the combined carrying capacity). The minimum number of seeds necessary for
C. maritima establishment is always smaller with (solid line) than without (dashed line) hybridization and is more than halved by hybridization. See Table S3 for
parameter values used in above simulations.
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Fig. S7. Predicted Allee thresholds for the establishment of C. maritima, as a function of pollination parameters ρ and γ. The reciprocal of ρ is the population
size at which the probability of pollination is 50%, whereas γ is a shape parameter. The minimum number of seeds necessary for C. maritima establishment is
smaller with (solid line) than without hybridization (dotted line). See Table S3 for other parameter values used in above simulations.
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Table S1. List of parameters used in the generic model

Parameter Definition Range

L Density-independent survival (i.e., fraction of seeds that germinate and survive
to maturity)

L∈ ½0,1�

B Density-dependent coefficients for seedling survivorship to maturity b∈R+

θ Per capita flower production θ∈R+

d Density-dependent coefficients for flower production reduction d ∈R+

s Selfing rate (i.e., proportion of flowers that produce seeds through
self-fertilization)

s∈ ½0,1�

ρ Pollination switching density parameter: 1/ ρ gives the population size
at which the chance of pollination is 50%

ρ∈R+

γ Switching exponent parameter in pollination equation (shape parameter):
when γ = 1, the Eq. S6 will collapse to type II functional response

γ ∈R+

α Compatibility of the two parental species when they intercross α∈ ½0,1�
β Compatibility bias parameter β∈R+ β≠ 0
n No. of chromosomes in haploid n∈N1

ℓ Total no. of alien chromosomes in a diploid genotype ℓ≤n
ν No. of alien chromosomes in a haploid gamete ν∈ f0, . . . , ℓg
x Index variable indicating the identity of a genotype (e.g., x =0 represents the newcomer

species, whereas x =1 denotes the resident species). Total no.
of elements (genotypes) in x is 2n+1.

x ∈

0, 1n,

2
n, . . . ,

n− 2
n , n− 1

n , 1
�

R Relative frequency of a given genotype in the population Rx ∈ ½0,1�
V Relative frequency of a given genotype in the population after adjustment for pollinator

preference
Vx ∈ ½0,1�

W A weight parameter that adjusts the relative frequency of genotype x according
to its degree of attractiveness to pollinators

Wx ∈R+

y An index variable indicating the identity of a female genotype (i.e., pollen recipient) As x
z An index variable indicating the identity of a male genotype (i.e., pollen donor) As x
Tmax Maximum value of a given trait (model parameter) Variable
xmax The genotype to which the maximum value of a trait (Tmax) is assigned As x
σ2 Variance of a phenotypic trait across genotypes σ2 ∈R+

Table S2. Parameter values (and ranges) used for simulations of the generic model

Parameter

Value/range

Invasion dynamics* Pollinator preference† Bias in compatibility† Mating system‡

Lx 0.1 0.1 0.1 0.1
bx 0.0001 0.0001 0.0001 0.0001
θx 1,000 1,000 1,000 1,000
dx 0.1 0.1 0.1 0.1
sx 0.01 0.01 0.01 s0 = [1...99%]

s1 = [1, 20, 40, 60, 80, 99%]
ρx 0.035 0.035 0.035 0.035
γx 3.5 3.5 3.5 3.5
α 0 and 0.5 0 and 0.5 0 and 0.5 0 and 0.5
β 1 1 [1…10] 1
n 18 18 18 18
W0 5 [1…10] 1 1
N0 50 [1…300] [1…300] [1…300]
N1 1,950 300 300 300

Parameter values used for sensitivity analysis are shown in boldface.
*Parameter setting used for the invasion scenarios presented in Fig. 1.
†Parameter setting used for estimating Allee thresholds presented in Fig. 2.
‡Parameter setting used for estimating Allee thresholds presented in Fig. 3.
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Table S3. Parameters of the simplified model and their values (range) used
in the simulations

Genotype L* b† θ‡ d§ s{ ρ# γjj W**

C. maritima 0.08 0.0001 1,195 0.1 0.01
�

1
300 . . .

1
20

�
½1 . . . 6� 7.5

C. edentula 0.03 0.0001 906 0.1 0.8
�

1
300 . . .

1
20

�
½1 . . . 6� 4.25

Hybrid 0.055 0.0001 1,486 0.1 0.2
�

1
300 . . .

1
20

�
½1 . . . 6� 1

*L is the fraction of the seedbank that results in mature plants. The average survival to
flowering (across a foredune and open beach habitats) was ∼8 and 3% for C. maritima and
C. edentula, respectively, in California (15). For hybrids, we assumed the average of the
two parental species.
†b is the density-dependent mortality parameter, assumed to be constant across the three
genotypes. A b value of 0.0001 would result in a carrying capacity ∼500 adult plants
(regardless of the genotype).
‡θ is the number of flowers produced by a single plant in the absence of competition and
was obtained from our common garden experiment of five, six, and two populations of
C. maritima, C. edentula, and putative hybrids.
§d indicates the proportional reduction in the number of flowers as the population density
increases. This coefficient was estimated from the data of Keddy (40) for C. edentula.
There are no similar data for C. maritima or hybrids, so we assumed that the three genotypes
exhibit the same response to density.
{s is the fraction of flowers that produce seeds through selfing. Selfing rates for the three
genotypes were obtained from our hand-crossing experiment.
#ρ is a coefficient in the pollination foraging submodel (Eq. S6): the coefficient’s reciprocal
is the population size at which the probability of pollination is 50%. Because there are no
empirical data, a range of values was tested for this parameter. For the simulation pre-
sented in Fig. 4 and Fig. S5, we used a ρ value of 0.035 corresponding to a population size
of ∼30 plants for 50% pollination. The results of simulations using the given range in the
Table S3 is shown in Fig. S7.
jjγ is a shape parameter in the pollination foraging model (Eq. S6). Because there are no
empirical data, a range of values was tested. For the simulation presented in Fig. 4 and Fig.
S5, we used a γ value of 3.5, which results in a sigmoid response [type III functional re-
sponse (30, 41)]. The results of simulations using the given range in the Table S3 is shown
in Fig. S7.
**W is a weighting parameter that adjusts the relative frequency of genotypes according
to their attractiveness to pollinators. These values were obtained from our field observa-
tions in a mixed population. For hybrid genotypes, we assumed the average of the two
parental species.

Other Supporting Information Files

SI Appendix (PDF)

Mesgaran et al. www.pnas.org/cgi/content/short/1605626113 10 of 10

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605626113/-/DCSupplemental/pnas.1605626113.sapp.pdf
www.pnas.org/cgi/content/short/1605626113


file:///UoM-File.unimelb.edu.au/207/Users/rcousens/Desktop/Piggy-backing/Piggy%20Back%20PNAS/Example_Fig_1B.txt[31/05/2016 12:48:04 PM]

%% Example: The below code will produce Figure 1B as in the main text of paper.
%  Make sure all four "functions" are in the same folder. These functions are:
% 1- "hybrid_facil.m" (this is the main function that excutes the model: you only need to work this
% function);
% 2- "crossing.m" (this function gives the identity of offspring genotypes);
% 3- "geno2pheno.m" (this function maps genotype to phenotype);
% 4- "selfingrate.m" (this function uses "geno2pheno.m" function to gives the selfing rate of genotypes) 

% Mohsen B Mesgaran (mohsenm@unimelb.edu.au): May 2016
%% 
clear % clear memory
close all % close all figures;
%% Parameters: see "hybrid_facil" function for a description of all the listed parameters
n_chromosome = 9; 
n_colonizer = 50; 
n_resident =1950; 
L = 0.1;
b = L/1000;
d = 0.1;
theta = 1000;
rho = 0.035;    
gamma = 3.5;
s_0 = 0.01; 
s_1 = 0.01;
x_max = 0;
W_max = 5;
alpha = 0.5;
beta = 1;
time = 99;
n = 2*n_chromosome+1; % number of genotypes 
%% Run the model
SeedBank = 
hybrid_facil(n_chromosome,n_colonizer,n_resident,L,b,d,theta,rho,gamma,s_0,s_1,x_max,W_max,alpha,beta,time);
SeedBank = [[n_colonizer; zeros(n-2,1); n_resident]'; SeedBank]; % Add initial population size to the matrix SeedBank
RF=bsxfun(@(x,y) x./y,SeedBank,sum(SeedBank,2)); % convert numbers to relative frequency

%%  Figure  configuration
set(0,'units','centimeter')
scsz = get(0,'screensize');
figWidth = 15;
figHeight = 15;
fc = figure ('Units','centimeters','Position',[(scsz(3)-figWidth)/2 (scsz(4)-figHeight)/2 figWidth figHeight], 'Color', [1 1 
1]);
%% Color for bars (color-coding genotypes)
red = [ones(1,fix(n/2)); linspace(0,0.9,fix(n/2)); linspace(0,0.9,fix(n/2))]';
blue = [linspace(0.9,0,fix(n/2)); linspace(0.9,0,fix(n/2));ones(1,fix(n/2))]';
col2 = [red; [0.97 1 .97]; blue];
col3=col2*.9;
%% plot the 3D bar graph
b1 = bar3(RF,1);
ylim([1 time+2])
xlim([0.25 19.75])
zlim([0 1])



file:///UoM-File.unimelb.edu.au/207/Users/rcousens/Desktop/Piggy-backing/Piggy%20Back%20PNAS/Example_Fig_1B.txt[31/05/2016 12:48:04 PM]

for i=1:n
set(b1(i),'facecolor',col3(i,:),'EdgeColor', col2(i,:),'LineWidth',0.05);
end
set(gca,'FontSize',8,'YTick', [1 20:20:100], 'XTick', 1:n,'XTickLabel',...
    {'100' '' '' '' '75' '' '' '' '' '50' '' '' '' '' '25' '' '' '' '0'}, 'XDir','normal');
axis square
x2 = xlabel('Genome derived\newlinefrom colonizer (%)','HorizontalAlignment' ,'center'); 
set(x2,'rotation',-26,'FontSize', 11);
x2.Position = [-6.5719   29.4396   -0.8152];
y2 = ylabel('Time (generations)');
set(y2,'rotation',34,'FontSize', 11); 
y2.Position = [4.5   -10.6476   -1.0063];
z1 = zlabel('Relative frequency','FontSize', 11);
z1.Position = [-16.9728   27.1791   -0.2612];
ax = gca; 
grid off
view(42,34);
annotation('textbox','String', 'Population dynamics of 19 genotypic classes over time as result of hybridization between 
colonizing and resident species',...
    'LineStyle', 'none','FontWeight','bold','FontSize', 11,'Position',[.1 .85 .75 .05],'HorizontalAlignment','center');
%%  Save figures in three different formats
set(fc,'PaperUnits','centimeters','PaperSize',[figWidth figHeight],'PaperPosition',[0 0 figWidth 
figHeight],'PaperPositionMode' , 'manual');
print(fc,'Fig1_PNAS', '-depsc' ,'-painters');
print(fc,'Fig1_PNAS', '-dpdf' ,'-painters');
print(fc,'Fig1_PNAS', '-dpng','-r300' );
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function SeedBank = 
hybrid_facil(n_chromosome,n_colonizer,n_resident,L,b,d,theta,rho,gamma,s_0,s_1,x_max,W_max,alpha,beta,time)
% n_chromosome = number of haploid chromosomes
% n_colonizer = initial population size of colonizer genotype
% n_resident = initial population size of resident genotype
% s_0 =  selfing rate in colonizer [0,...,1]
% s_1 =  selfing rate in resident [0,...,1]
% L =  the proportion of seeds recruited independent of population density (Eq.2 in Supplementary Information)
% b =   mortality rate due to density: b/L gives the max number of adult plants (sort of carrying capacity for adult plant 
stage not seed stage: see Eq.2 in Supplementary Information)
% theta = the maximum number of ovules/flowers produce by a single plant (Eq.3 in Supplementary Information)
% d = rate of decrease in ovule/flower production due to density (Eq.3 in Supplementary Information)
% rho =  location parameter in pollination function: 1/rho gives the plant density at which the probability of pollination 
is 50% (Eq.6 in Supplementary Information)
% gamma = shape parameter in pollination function (Eq.6 in Supplementary Information)
% alpha = compatibility between parental genotypes i.e. colonizer*resident (Eq.15 in Supplementary Information). 
When alpha = 0 the whole model is reduced to a "competition model" with two species
% beta = bias parameter in backcrossing (Eq.15 in Supplementary Information)
% time = number of generations/years
% x_max = genotype with the highest value of attractiveness (see Eq.16 in Supplementary Information)
% W_max = attractiveness of the most attractive genotype (that of the least will be 1). if W_max = 1, then all "n" 
genotypes will have the same attractiveness value of 1

% Mesgaran B Mesgaran (mohsenm@unimelb.edu.au): May 2016
%% Genotyping
n = 2*n_chromosome+1; %number of genotypes
N_x = [n_colonizer; zeros(n-2,1); n_resident]'; % number of seeds from genotype x
x = linspace(0,1,n); % Vector of genotype ranging from 0 to 1 with n classes where 0 indicates colonizer and 1 resident 
[Sx , Sx_x] = selfingrate(s_0,s_1,n); % this function gives the selfing rate of all "n" genotypes (based on Eq.16 in 
Supplementary Information) in vector "Sx" and n replicates of them in "Sx_x"
[cross_offs , self_offs] = crossing(n); % this function gives the identity of genotypes resulted from all pairwise crossings
 between genotypes in the matrix "cross_offs" with n^2 by n dimension while the identity offspring from selfing is given
 in "self_offs" whcih has a dimension n*n (this function is based on E.12 and Eq. 13 in Supplementary Information)
xx = repmat(x,1,n); % repeating the vector "x" for pairwise crossings
z = sort(xx(:),1); % vector of male plants
y = xx(:); % vector of female plants
W_x = geno2pheno(x_max,W_max,1,n); % this function maps genotype to phenotypic (here attractiveness) using Eq. 
16 in Supplementary Information

% the start of the loop
for j=1:time
%% Survival to maturity (flowering stage)
N = sum(N_x(:)); % total number of seeds summed over all genotypes
S_N = L/(1+b*N); % Survival function(Eq.2 in Supplementary Information)
M_N = S_N*N_x; % number of mature plants
M_N2 = [reshape(repmat(M_N,n,1),n*n,1) repmat(M_N',n,1) ]; % repeating the vector "M_N" for pairwise crossings

%% Adjusting relative frequencies for pollinator preference (attractiveness)
M_total = sum(M_N(:)); % total number of adult plants
R_x = M_N.'/M_total; % unadjusted (for pollinator preference) relative frequency of each genotype
V_x = R_x.*W_x./sum(R_x.*W_x); % adjusted (for pollinator preference) relative frequency of each genotype (Eq.10 
in Supplementary Information) 
RV_x = repmat(V_x,1,n);   % repeating the vector "V_x" for pairwise crossings
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RV_x=reshape(RV_x.',[],1);  % reshape it to get the proper column vector 

%% Pollination
phi_M = (rho*M_total)^gamma/(1+ (rho*M_total)^gamma); % pollination functional response relating probability of 
pollination to total plant density (Eq.6 in Supplementary Information) 
phi_M_x = phi_M*RV_x; % probability of pollination for genotype x while accounting for the for pollinator preference

%% Probability of out-crossing
out_cross_x = phi_M_x.*(1-Sx_x); % while "s" fraction of ovules get fertilised through selfing the remaining "(1-s)" 
need to be fertilized through pollination

%% Compatibility
C_yz = z.^beta.*(alpha - 1) - y.^beta.*(2*z.^beta.*(alpha - 1) - alpha + 1) + 1; % the compatibility of female genotype y 
with the male genotype z (Eq.15 in Supplementary Information) 
fertile_out_cross_x =  out_cross_x.*C_yz  ;    % the probability of fertile outcrossing between genotypes after 
accounting for probability pollination (phi_M_x), non-selfing fraction (1-s) and compatibility (C_yz)

%% Flower production
F_M = 1-(d*M_total)/(1+(d*M_total)); % reduction in capcity of ovule production due to density-dependent 
competition (Eq.3 in Supplementary Information)
theta_M_x = F_M*(M_N2(:,2).*theta); % total number of ovules produced by adult plants of genotype x

%% Outcrossed seed production
out_seed = theta_M_x.*fertile_out_cross_x; % number of seeds produced on genotype x through outcrossing (note that 
these are not seeds with genotype x, the identity of these seeds need to be determined by function "cross_offs" which is 
based on Eq.12 and Eq.13 in Supplementary Information

%% Selfed seed production       
theta_M_x = F_M*(M_N.*theta'); % total number of ovules produced by adult plants of genotype x, here M_N which is
 a vector of length n is used not M_N2 which has a length of n^2 (the values are the same but as in the previous section 
we were dealing with outcrossing we needed to have all pairwise combinations)
self_seed = (theta_M_x.*Sx');   % number of seeds produce on genotype x through outcrossing (note that these are not 
seeds with genotype x, the identity of these seeds need to be determined by function "self_offs" which is based on Eq.12
 and Eq.13 in Supplementary Information

%% Total seed production
out_seed_x = out_seed'*cross_offs; %number of seeds with genotype x that has been produced through outcrossing
self_seed_x = self_seed*self_offs; %number of seeds with genotype x that has been produced through selfing
out_seed_x(isnan(out_seed_x)) = 0; % convert NaNs to zero (if for any unforeseen reason the model gives NaN values)
self_seed_x(isnan(self_seed_x)) = 0; % convert NaNs to zero (if for any unforeseen reason the model gives NaN values)
N_x = self_seed_x+ out_seed_x; % total number of seeds with genotype x after on generation
%% End of the loop
SeedBank (j,:) = N_x;   % we save all these data into the new matrix SeedBank 
% This matrix SeedBank has "n" columns (equal to the number of genotypes) and "time" rows (equal to the
% number of generations). The first column represents the "colonizer" while the last column is the "resident" species.
% If "alpha = 0" it means there is no hybridisation, so all the first and last columns of matrix "SeedBank" will have 
"non-zero" data. 
end
end
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function [cross_offs, self_offs] = crossing(n)
% This function gives the identity of genotypes resulted from all pairwise crossings between 
% genotypes in the matrix "cross_offs" with n^2 by n dimension while the identity offspring from 
% selfing is given in "self_offs" which has a dimension n*n. 
% This function is based on E.12 and Eq. 13 in Supplementary Information.

% Mesgaran B Mesgaran (mohsenm@unimelb.edu.au): May 2016
%% 
n = (n-1)/2;
L = 1:n;
  N=cell(n,1);

 for j=1:length(L)
 for i=1:L(j)+1
     K = 0:L(j);
     if K(i)==L(j)-K(i)
            N{j,1}(i) = 2*(nchoosek(n,K(i))*nchoosek(n,L(j)-K(i)));
     else
          N{j,1}(i) = nchoosek(n,K(i))*nchoosek(n,L(j)-K(i));
     end
 end
 end
 P = cellfun(@(x) x./sum(x),N,'uni',0);

 for i=1:n
     l = length(P{i});
     P{i}(1,l+1:n+1)=0;
 end

gmt =[[1 zeros(1,n)]; cell2mat(P)];
gmt2 = fliplr(flip(gmt));
mios = [gmt; gmt2(2:end,:)];

%% For outcrossed flowers
cross_offs = cell(2*n+1,1);
for i=1:2*n+1
    for j=1:2*n+1
        cross_offs{i}(j,:) = conv(mios(i,:),mios(j,:));
    end
end
cross_offs = cell2mat(cross_offs);

%% For selfed flowers

self_offs = zeros(2*n+1);
for i = 1:2*n+1
    self_offs (i,:) = conv(mios(i,:),mios(i,:));
end
end



file:///UoM-File.unimelb.edu.au/207/Users/rcousens/Desktop/Piggy-backing/Piggy%20Back%20PNAS/geno2pheno.txt[31/05/2016 12:48:30 PM]

function F = geno2pheno(u,T,z,n)
% This function maps genotype to phenotype using Eq.16 in Supplementary Information. The output
% vector F is scaled to vary from T to 1 (if T<1) or 1 to T (if T > 1). The function uses the "solve" 
% to estimate the value of sigma in Eq. 16.
% u = the location of the genotype with largest or smallest phenotypic value 
% T =  is the phenotypic value of a trait
% if T > 1 u is the location for the genotype with largest phenotypic value 
% if T < 1 u is the location for the genotype with smallest phenotypic value 
% if T = 1 all genotypes are equally fit
% z = can take 3 values: 1, 2 and 3
% if z = 1, the output F is of length of n (= number of genotypes);
% if z = 2, the output F is of length of n^2 and includes the phenotypic values of genotypes acting% 
as female in all pairwise combinations of genotypes
% if z = 3, the output F is of length of n^2 and includes the phenotypic values of genotypes acting% 
as male in all pairwise combinations of genotypes
%
% Mesgaran B Mesgaran (mohsenm@unimelb.edu.au): May 2016
%% Total number of genotypes
G = linspace(0,1,n); % genotypes vector
E = repmat(G,1,n); 
Y=[sort(E(:),1) E(:)];
Ym = Y(:,1);
Yf = Y(:,2);

if z ==1;
    G = G;
elseif z == 2;
    G = Yf;
else z == 3;
    G = Ym;
end
if T < 1;
         if u <= .5;

X = 1;
             else X = 0;
        end
        syms v
            v=solve(T*exp((((X-u)^2)/(2*v^2)))==1,v);

v = double(v);
v=v(v>0);

            F = T*exp(((G-u).^2)./(2*v^2));
elseif T > 1;
       if u <= .5;

X = 1;
             else X = 0;
       end
       syms v;
            v=solve(T*exp(-(((X-u)^2)/(2*v^2)))==1,v);
              v = double(v);

v=v(v>0);
        F = T*exp(-((G-u).^2)./(2*v^2));
else T == 1;
    F = ones(1,length(G));
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end
   F = reshape(F,length(G),1);
  end
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function [Sx, Sx_x] = selfingrate(s_0,s_1,n)
% this function gives the selfing rate of all "n" genotypes (based on Eq.16 in Supplementary Information) 
%in vector "Sx" and n replicates of them in "Sx_x"
% n = number of genotypes
% s_0 =  selfing rate in colonizer [0,...,1]
% s_1 =  selfing rate in resident [0,...,1]

% Mesgaran B Mesgaran (mohsenm@unimelb.edu.au): May 2016
[m , e] = meshgrid(s_0,s_1);
Sx_x = [m(:) e(:)];

Lm = length(s_0);
Le = length(s_1);
Sx = zeros(n,Lm*Le);

for i=1:Lm*Le
     if Sx_x(i,1)>=Sx_x(i,2)
    Sx(:,i) = tdg(0,Sx_x(i,1)/Sx_x(i,2),1,n)*Sx_x(i,2);
    else 
         Sx(:,i) = tdg(1,Sx_x(i,2)/Sx_x(i,1),1,n)*Sx_x(i,1);
     end
end

  Sx_x= repmat(Sx,n,1);
end
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