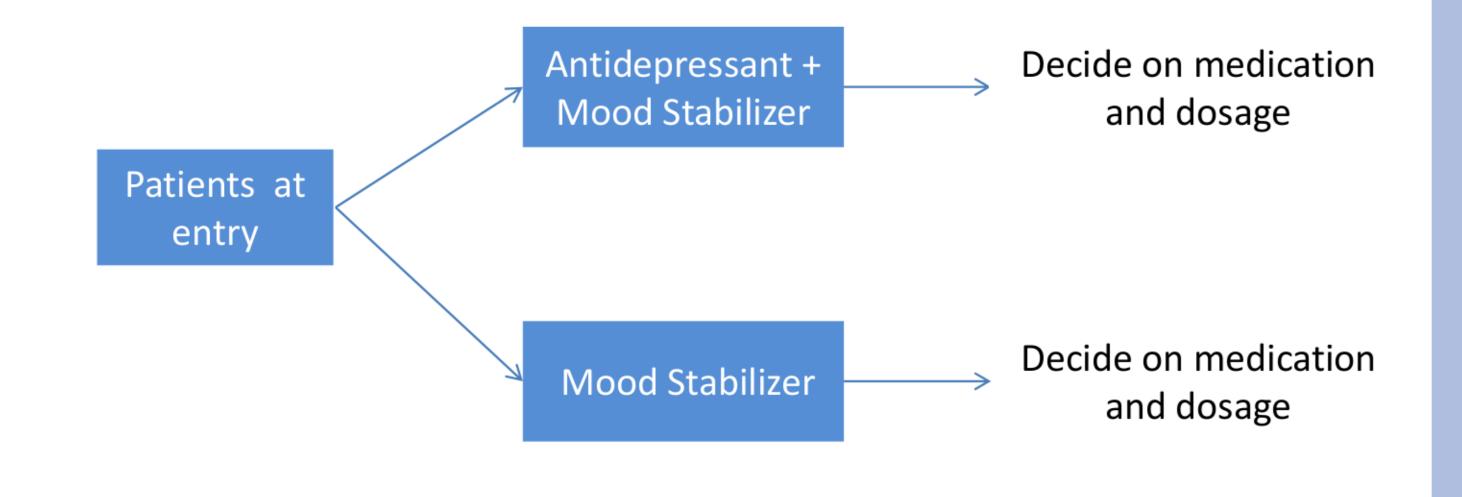


Who will benefit from antidepressants in the acute treatment of bipolar depression? A follow up observational data analysis of STEP-BD


Fan Wu¹, Eric B. Laber¹, Ilya A. Lipkovich², Emanuel W. Severus³ North Carolina State University¹; Quintiles²; University Hospital Carl Gustav Carus, TU Dresden³

STEP-BD Study and SAD data

- ➤ Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD): 4,360 participants with bipolar disorder in USA from 22 sites over 7 years
- ► Acute Depression Randomized Care Pathway (RAD) is a Sequential Multiple Assignment Randomized Trial (SMART) in STEP-BD
 - ▶ RAD was constructed to examine response to initial antidepressant treatments and secondary interventions for non-responders
 - Antidepressant medication: bupropion(wellbutrin), paroxetine(paxil)
 - Data analysis based on RAD present some evidence that subjects with a prior (hypo)mania episodes may not benefit from an adjuvant antidepressant [Wu et al., 2015]
- ► Standardized Care Pathway (SCP) is an observational study in STEP-BD
- Standard Acute Depression Data (SAD) set is constructed from SCP in STEP-BD
 - Patients in SAD satisfy RAD pathway entering criteria
 - ▶ 10 different antidepressant medications

SAD Data Structure

- ightharpoonup Observe (X, A, Y) for each patient
 - \triangleright X: Patient information prior to treatment assignment
 - ▷ A: Assigned treatment
 - \triangleright Y: Overall depression score (SUMD) measured every 6-8 weeks
- $ightharpoonup a \in \mathcal{A}$ has the form (t_1, d_1, t_2, d_2) :
 - $\triangleright t_i$: Treatment from \mathcal{T}_i
 - \triangleright d_j : Dose level at t_j , $d_j = 1, 2, 3$
 - $\triangleright j = 1,2$ two treatments for patients
- Treatments partitioned into groups: $\mathcal{T}_j = \bigcup_{k=1}^{\mu_j} \mathcal{G}_{kj}$ (see Table 1 and 2)
- ► SAD is an observational study (treatments not randomly assigned)

Optimal Treatment Regime for SAD

- Personalized medicine
 - ▶ Treatment given only if, when, and to whom it is needed
 - Better outcome less side effect
- ► A treatment regime $\pi: X \to A$ maps patient information X to a recommended treatment $\pi(X)$
- ► The optimal treatment regime minimizes mean outcome *SUMD* when applied to population of interest
 - \triangleright Estimate the optimal treatment regime using grouped Q-learning
- Data issues for SAD:
 - ▶ There is a significant amount of missing covariate information at both stages, Multiple Imputation is used to impute missing values
 - ▶ Variables are selected for grouped Q-learning model construction by forward variable selection
- Antidepressants are divided into 4 groups

Group Number	Medication Names
A1	Deseryl, Serzone
A2	Citalopram, Escitalopram Oxalate, Prozac,
	Fluvoxamine, Paroxetine, Zoloft
A3	Venlafaxine
A4	Bupropion

Table 1

- ▶ The dosage is divided into 3 levels: high, medium, low
- ► Mood Stabilizers are divided into 5 groups

Group Number	Medication Names
M1	Tegertol, Valproate
M2	Olanzapine, Quetiapine
M3	Clozapine
M4	Lithium
M5	Risperdal, Geodon, Abilify
	Table 2

Table 2

- ▶ The dosage is divided into 3 levels: high, medium, low
- ightharpoonup Variable chosen for grouped Q-learning via variable selection is:
- \triangleright SUMD₀: overall depression score at baseline (0 16)
- ▶ MEDINS: indicator of medical insurance (0: no, 1: yes)
 ▶ RACE: indicator of race (0: others, 1: white)

SAD Analysis Result

 \blacktriangleright Estimated optimal regime with RACE = 1, MEDINS = 1:

$SUMD_0$	Optimal Treatment
[0, 6)	Low M2, Medium A2
[6,8)	Low M2, High A1
[8, 10)	High M1, High A1
[10, 12)	Medium M1, Medium A2
[12, 14)	Medium M1, Low A2
[14, 16]	Medium M2, High A3

ightharpoonup Estimated optimal regime with RACE = 1, MEDINS = 0:

$SUMD_0$	Optimal Treatment
[0, 8)	Low M2, Medium A2
[8, 10)	Low M2, High A1
[10, 12)	Medium M1, Low A2
[12, 16)	Medium M2, Low A2

ightharpoonup Estimated optimal regime with RACE = 0, MEDINS = 1:

$SUMD_0$	Optimal Treatment
[0, 6)	Low M2, Medium A2
[6, 8)	Low M2, High A1
[8, 10)	High M2, Medium A2
[10, 16]	High M2, High A3

ightharpoonup Estimated optimal regime with RACE = 0, MEDINS = 0:

$SUMD_0$	Optimal Treatment
[0, 8)	Low M2, Medium A2
[8, 16)	High M2, High A3

- Where
 - \triangleright Mi Aj: group i mood stabilizer, group j antidepressant
 - ▶ Low, Medium, High: mood stabilizer or antidepressant dosage level

Conclusions and Future Work

- \triangleright Grouped Q-learning give advice to the choice of medication and dosage
- Patients with more severe baseline depression in general require higher dose for Race = 0
- Try to connect optimal regime also with evolving patient's characteristics