Simulation Study for Exposure-Response(ER) Model in QT study Junxian Geng¹, Qianyu Dang² ¹Department of Statistics, Florida State University ²Center for Drug Evaluation and Research, US FDA

DISCLAIMER

This presentation reflects the views of the author and should not be construed to represent FDA'sviews or policies.

Objectives

To see if **ER model** can be used to determine whether a drug has a threshold pharmacologic effect on cardiac repolarization, as detected by **QTc prolongation**.

Background

The QT interval can reflect the duration of ventricular depolarization and subsequent repolarization.

- As least 1 thorough QT/QTc(TQT) study when submitting a new drug application. QTc = QT Interval corrected for heart rate

TQT study

TQT study is used to determine whether the drug has a threshold pharmacologic effect on cardiac repolarization, as detected by QTc prolongation.

In order to rule out a difference between the drug and placebo of greater than 10ms, the largest two-sided 90%upper bound for baseline adjusted difference of the drug and placebo across all time points is used. The test result is negative or non-inferior if H_0 is rejected at **all** K points.

 $H_{0k}: (\mu_{TR_k} - \mu_{PL_k}) \ge 10ms, H_{1k}: (\mu_{TR_k} - \mu_{PL_k}) < 10ms$ (1) • A linear mixed effect model with random intercept is used here.

$$\Delta QT_{ijk} = \mu + \tau_i + t_k + \tau_i * t_k + b_j + \epsilon_{ijk}$$
⁽²⁾

Where ΔQT_{ijk} represents the baseline adjusted QT_c value of jth subject of the ith treatment at the kth time point; τ is the treatment effect; t is the time-point effect; *b* is the random intercept.

ER Model

 The primary analysis is based on the relationship between each **drug plasma concentrations** (Pharmacokinetic) and the effect on change from baseline QTc (Pharmacodynamic), which has a different hypothesis from IUT hypothesis as in TQT study.

According to the protocol, if the upper bound of the two-sided 90% confidence interval (CI) of the predicted placebo-corrected $\Delta QT_c(\Delta \Delta QT_c)$ at the **geometric** mean Cmax of concentration is above 10ms, a positive QT-effect is demonstrated. Then the test may be stated

 $H_0: \Delta \Delta QT_{c_{cmax}} \ge 10ms, H_1: \Delta \Delta QT_{c_{cmax}} < 10ms$ (3)

- Even though the truth is that Cmax is a random variable, Type I and II error rate is based on the assumption that Cmax is either fixed or estimated with little error in this test.
- Still a linear mixed effect model with random intercept is used here.

$$\Delta QT_{c_{ij}}(t) = \mu + \tau_i + \beta * C_{ij}(t) + b_j + \epsilon_{ijt} \qquad (4)$$

Where $\Delta QT_{c_{ii}}(t)$ represents the baseline adjusted QT_c value of jth subject of the ith treatment at the kth time point; τ is the treatment effect; $C_{ij}(t)$ is the drug plasma concentration value of the jth subject of the ith treatment at time t ($C_{ij}(t)$ is always 0 for placebo); b is the random intercept.

The interval prediction is gotten by both normal assumption and bootstrapping.

Hypothesis Testing

- **Endpoint**: placebo-adjusted change from baseline QT Interval corrected for heart rate at the geometric mean Cmax of plasma concentration values, denoted as $\Delta \Delta QTc_{Cmax}$.
- It's a **safety study**, thus we put no prolongation effect in the alternative hypothesis.

 $H_0: \mu_{cmax} \ge 10ms, H_1: \mu_{cmax} < 10ms,$

$$=\frac{\Delta \Delta \widehat{QTc}_{Cmax} - \mu_{Cmax}}{se(\Delta \Delta \widehat{QTc}_{Cmax})}$$

- Type-I error: P(test no prolongation|real prolongation)Type-II error: P(test prolongation|real no prolongation)
- Control Type-I error and see what Type-II error we can get.

Data Generation

- Usually in ER model, each drug should be tested on different doses and each dose should have values for multiple time-points.
- The data can be generated from the following model: $\Delta QT_{ijt} = \alpha + \beta * x_{ijt} + b_i + e_{ijt} = \alpha + \beta * x_{ijt} + err_{ijt} \quad (6)$
- Where $b'_i s$ and $e'_{ijt} s$ are both from iid normal distribution with mean 0 and they are independent of each other.
- x_{ijt} represents the plasma concentration value of subject i in treatment j at tth time-point. The values of xbetween subjects are independent. The values of x within subject can be generated from truncated multivariate normal distribution for plasma concentration value should be positive.
- All the parameter and covariates values are from the real study data.
- We set mean $\Delta \Delta QTc$ at Cmax as **10ms** when there is prolongation effect (for Type-I error), and to be **3ms** when there is none (for Type-II error).
- Choose certain proportion of subjects to have placebo in one of the treatment and some observations may be missing randomly.

Simulation Study

I have three cases in the simulation study.

- **Case I**: Generate data from (6), put 0 to concentration values for Placebo data; then take the generated data into (4) and get prediction interval.
- **Case II**: Generate data from (6), but generate **independently** for Placebo data from $y_{i0t} = \alpha + err_{i0t}$; then take the generated data into model (4) and get prediction interval.
- **Case III**: Generate data the same as in Case II; then take the generated data into model $\Delta QT_{c_{ij}}(t) = \mu + \beta * C_{ij}(t) + b_j + \epsilon_{ijt}$ and get prediction interval.

Literature review

Some similar simulation study in [2]

- When a true ΔQT_c prolongation effect at the supratherapeutic concentration is 10 msec, they have a Type-I error **0.065**.
- When a true ΔQT_c prolongation effect at the supratherapeutic concentration is 3 msec, they have a Type-II error **0.191**.

|1| [2]

I fixed correlation structure in error terms and let number of doses and number of time-points change. The results are on both therapeutic and supratherapeutic doses:

(a) Type I error Therapeutic dose

Case one Case two Case three

(c) Type I error Supratherapeutic

(d) Type II error Supratherapeutic

If I set the number of doses to be 5 and number of timepoints to be 3 and let the correlation among errors change:

Solid: normal assumption, dashed: bootstrapping

Discussion and Future Work

 Many elements such as covariance structure, number of time-points, number of doses, test on therapeutic/supratherapeutic dose may affect the Type I and Type II error in Exposure-response Model.

The model works slightly better without adding treatment factor in the model.

• More research should be done on estimating Cmax.

References(Highlighted)

Yi Tsong(2006). On the Designs of Thorough QT/QTC Clinical Trials. *Journal of* Biopharmaceutical Statistics, 23: 43-56.

Cara H. Nelson et al.. GS-4997 Concentration-QT Analysis in First-in-Human Study to Evaluate the Proarrhythmic Risk to Support a Waiver of a Thorough QT Study.